Phys Chem Chem Phys
September 2024
Light-emitting electrochemical cells (LECs) are appealing for cost-effective, large-area emission applications; however, their luminescence efficiency is significantly limited by exciton annihilation caused by high concentration polarons. Here, we present thermally activated delayed fluorescence (TADF) sensitized fluorescence LECs (TSF-LECs) that achieve a record 9% EQE. The TADF sensitizers with rapid reverse intersystem crossing (RISC) rates can effectively convert triplet excitons to singlet excitons in LECs, thereby establishing a more efficient overall energy transfer pathway.
View Article and Find Full Text PDFOptical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay.
View Article and Find Full Text PDFLarge-scale assembly of organic micro/nanocrystals into well-defined patterns with programmable structures is essential for applications such as information encryption at both high data density and high security level. Here, a magnetic-field-assisted approach that produces programmable assemblies of organic microcrystals with various shapes and orientations, using the magnetic domains of the underlying ferromagnetic metal microarrays as the printing templates, is developed. The diamagnetic microcrystals tend to aggregate in the regions of minimal field strength, and thus their assembly behavior is precisely controlled by the local field distribution on top of magnetic domains on substrate.
View Article and Find Full Text PDF