Publications by authors named "Qingcong Lin"

The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation.

View Article and Find Full Text PDF

Treatment of BCR-ABL+ human leukemia has been significantly improved by ABL tyrosine kinase inhibitors (TKIs), but they are not curative for most patients and relapses are frequently associated with BCR-ABL mutations, warranting new targets for improved treatments. We have now demonstrated that protein expression of human estrogen receptor alpha 36 (ERα36), an alternative splicing variant of human estrogen receptor alpha 66 (ERα66), is highly increased in TKI-insensitive CD34+ chronic myeloid leukemia (CML) cells and BCR-ABL-T315I mutant cells, and is abnormally localized in plasma membrane and cytoplasm. Interestingly, new pre-clinically-validated analogs of Icaritin (SNG162 and SNG1153), which target abnormal ERα36 activity, inhibit cell growth and induce apoptosis of BCR-ABL+ leukemic cells, particularly BCR-ABL-T315I mutant cells.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments.

View Article and Find Full Text PDF

Tumor-initiating cell (TIC) is a subpopulation of cells in tumors that are responsible for tumor initiation and progression. Recent studies indicate that hepatocellular carcinoma-initiating cells (HCICs) confer the high malignancy, recurrence and multi-drug resistance in hepatocellular carcinoma (HCC). In this study, we found that Icaritin, a prenylflavonoid derivative from Epimedium Genus, inhibited malignant growth of HCICs.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain.

View Article and Find Full Text PDF

The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence.

View Article and Find Full Text PDF
Article Synopsis
  • Glycerol-3-phosphate acyltransferases (GPATs) are key enzymes in the synthesis of glycerolipids and are mostly encoded by the GPAT3 and GPAT4 genes; GPAT3 is particularly important in white adipose tissue.
  • Mice lacking GPAT3 (Gpat3(-/-)) showed a significant decrease in GPAT activity in adipose tissue but maintained viability and fertility without major metabolic issues on a standard diet.
  • However, on a high-fat diet, female Gpat3(-/-) mice experienced less weight gain and higher energy expenditure, while both male and female mice exhibited improved glucose tolerance and liver enlargement, indicating GPAT3’s crucial role in managing energy, glucose
View Article and Find Full Text PDF

HTRA1 is a member of the High Temperature Requirement (HTRA1) family of serine proteases, which play a role in several biological and pathological processes. In part, HTRA1 regulation occurs by inhibiting the TGF-β signaling pathway, however the mechanism of inhibition has not been fully defined. Previous studies have shown that HTRA1 is expressed in a variety of tissues, including sites of skeletal development.

View Article and Find Full Text PDF

Coiled-coil domain containing 80 (Ccdc80) is a secreted protein highly enriched in mouse and human white adipose tissue (WAT) that plays an important role during adipocyte differentiation in vitro. To investigate the physiological function of Ccdc80 in energy and glucose homeostasis, we generated mice in which the gene encoding Ccdc80 was disrupted. Mice lacking Ccdc80 showed increased sensitivity to diet-induced hyperglycemia and glucose intolerance while displaying reduced glucose-stimulated insulin secretion in vivo.

View Article and Find Full Text PDF

Lymphatic vessels play a key role in maintaining tissue-fluid homeostasis, immune surveillance and metastasis. The hyaluronan receptor, LYVE-1, is widely used as a molecular marker for adult and embryonic lymphatic endothelium, but its physiological functions have not yet been established in vivo. In agreement with a recent report, LYVE-1(-/-) mice, which are healthy and fertile, do not display any defects related to congenital abnormalities of the lymphatic system.

View Article and Find Full Text PDF

The low-fidelity polymerase eta (poleta) is required for bypass of UV-induced pyrimidine dimers inserting adenine nucleotides opposite these lesions. Mutations in the poleta gene are responsible for the genetic defect in xeroderma pigmentosum variant patients. To study if the lack of poleta significantly elevates spontaneous mutation frequency in various organs and tissues of the mouse, we crossed poleta-deficient mice with transgenic mice harboring a chromosomally integrated lacZ-plasmid reporter construct.

View Article and Find Full Text PDF

DNA polymerase iota (pol iota) is a conserved Y family enzyme that is implicated in translesion DNA synthesis (TLS) but whose cellular functions remain uncertain. To test the hypothesis that pol iota performs TLS in cells, we compared UV-induced mutagenesis in primary fibroblasts derived from wild-type mice to mice lacking functional pol eta, pol iota, or both. A deficiency in mouse DNA polymerase eta (pol eta) enhanced UV-induced Hprt mutant frequencies.

View Article and Find Full Text PDF

Recent improvements in diagnostic methods have opened avenues for detection and treatment of (pre)malignant lesions at early stages. However, due to the lack of spontaneous tumor models that both mimic human carcinogenesis and allow direct optical imaging of the vasculature, little is known about the function of blood and lymphatic vessels during the early stages of cancer development. Here, we used a spontaneous carcinogenesis model in the skin of DNA polymerase eta-deficient mice and found that interstitial fluid pressure was already elevated in the hyperplastic/dysplastic stage.

View Article and Find Full Text PDF

Xeroderma pigmentosum variant (XPV) patients with mutations in the DNA polymerase eta (pol eta) gene are hypersensitive to sunlight and have greatly increased susceptibility to sunlight-induced skin cancer. Consistent with the ability of Pol eta to efficiently bypass UV light-induced cyclobutane pyrimidine dimers, XPV cells lacking Pol eta have diminished capacity to replicate UV-damaged DNA and are sensitive to UV light-induced killing and mutagenesis. To better understand these and other Pol eta functions, we generated Pol eta-deficient mice.

View Article and Find Full Text PDF

H1 linker histones are involved in packaging chromatin into 30-nm fibers and higher order structures. Most eukaryotic cells contain nearly one H1 molecule for each nucleosome core particle. Male germ cells in mammals contain large amounts of a germ cell-specific linker histone, HIST1HT, herein denoted H1t, which is particularly abundant in pachytene spermatocytes.

View Article and Find Full Text PDF

Posttranslational modifications and remodeling of nucleosomes are critical factors in the regulation of transcription. Higher-order folding of chromatin also is likely to contribute to the control of gene expression, but the absence of a detailed description of the structure of the chromatin fiber has impaired progress in this area. Mammalian somatic cells contain a set of H1 linker-histone subtypes, H1 (0) and H1a to H1e, that bind to nucleosome core particles and to the linker DNA between nucleosomes.

View Article and Find Full Text PDF