Publications by authors named "Qingchang Tian"

Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells.

View Article and Find Full Text PDF

Macrophages play a critical role in the body's defense against cancer by phagocytosing tumor cells, presenting antigens, and activating adaptive T cells. However, macrophages are intrinsically incapable of delivering targeted cancer immunotherapies. Engineered adoptive cell therapy introduces new targeting and antitumor capabilities by modifying macrophages to enhance the innate immune response of cells and improve clinical efficacy.

View Article and Find Full Text PDF

Malignant ascites occurs as a symptom of the terminal stage of cancer, affecting the quality of life through abdominal distension, pain, nausea, anorexia, dyspnea and other symptoms. We describe the current main drug treatments in addition to surgery according to the traditional and new strategies. Traditional treatments were based on anti-tumor chemotherapy and traditional Chinese medicine treatments, as well as diuretics to relieve the patient's symptoms.

View Article and Find Full Text PDF

Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated.

View Article and Find Full Text PDF

Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects.

View Article and Find Full Text PDF

Macrophages are versatile antigen-presenting cells. Recent studies suggest that engineered modifications of macrophages may confer better tumor therapy. Genetic engineering of macrophages with specific chimeric antigen receptors offers new possibilities for treatment of solid tumors and has received significant attention.

View Article and Find Full Text PDF

Exosomes derived from tumor cells contain various molecular components, such as proteins, RNA, DNA, lipids, and carbohydrates. These components play a crucial role in all stages of tumorigenesis and development. Moreover, they reflect the physiological and pathological status of parental tumor cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), are membrane-bound vesicles that have many advantages over traditional nanocarriers for drug and gene delivery. Evidence from recent studies indicate that EVs have therapeutic capability with chemical or biological modification. Tumor-derived exosomes (TEXs) were used as a new type of antigens or tumor vaccines in anti-tumor immunotherapy.

View Article and Find Full Text PDF

Exosomes carry genetic information originating from their parental cells, raising their possibility as novel noninvasive biomarkers for cancer. Tumor-derived exosomes (TEXs) have a variety of endogenous cargos that reflect the pathophysiology status and information of tumor cells. TEXs are increasingly being recognized as potential biomarkers for cancer diagnosis prognosis, and monitoring.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) in blood is the direct cause of tumor metastasis. The isolation and detection of CTCs in the whole blood is very important and of clinical value in early diagnosis, postoperative review, and personalized treatment. It is difficult to separate all types of CTCs that efficiently rely on a single path due to cancer cell heterogenicity.

View Article and Find Full Text PDF

Exosomes are nanosized vesicles secreted by cells, with a lipid bilayer membrane and protein and nucleic acid contents. Here, we present the first method for the selective and quantitative analysis of exosomes by digital detection integrated with nucleic acid-based amplification in a microchip. An external biocompatible anchor molecule conjugated with DNA oligonucleotides was anchored in the lipid bilayer membrane of exosomes via surface self-assembly for total exosome analysis.

View Article and Find Full Text PDF

Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance.

View Article and Find Full Text PDF

This article contains schemes, original experimental data and figures for an integrated modularized microfluidic system described in "An integrated microfluidic system for bovine DNA purification and digital PCR detection [1]". In this data article, we described the structure and fabrication of the integrated modularized microfluidic system. This microfluidic system was applied to isolate DNA from ovine tissue lysate and detect the bovine DNA with digital PCR (dPCR).

View Article and Find Full Text PDF

In this paper, we described an integrated modularized microfluidic system that contained two distinct functional modules, one for nucleic acids (NA) extraction and the other for digital PCR (dPCR), allowing for detecting the bovine DNA in ovine tissue.

View Article and Find Full Text PDF

A nanoliter self-priming compartmentalization (SPC) microfluidic chip suited for the digital polymerase chain reaction (dPCR) analysis in point-of-care testing (POCT) has been developed. This dPCR chip is fabricated of polydimethylsiloxane (PDMS). After the dPCR chip is evacuated, there will be a negative pressure environment in the chip because of the gas solubility of PDMS.

View Article and Find Full Text PDF

A nanoliter self-priming compartmentalization (SPC) microfluidic chip suited for the digital polymerase chain reaction (dPCR) analysis in point-of-care testing (POCT) has been developed. This dPCR chip is fabricated of polydimethylsiloxane (PDMS). After the dPCR chip is evacuated, there will be a negative pressure environment in the chip because of the gas solubility of PDMS.

View Article and Find Full Text PDF

An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform.

View Article and Find Full Text PDF