Publications by authors named "Qingbo Kang"

The recent advent of in-context learning (ICL) capabilities in large pre-trained models has yielded significant advancements in the generalization of segmentation models. By supplying domain-specific image-mask pairs, the ICL model can be effectively guided to produce optimal segmentation outcomes, eliminating the necessity for model fine-tuning or interactive prompting. However, current existing ICL-based segmentation models exhibit significant limitations when applied to medical segmentation datasets with substantial diversity.

View Article and Find Full Text PDF

Recently, large pretrained vision foundation models based on masked image modeling (MIM) have attracted unprecedented attention and achieved remarkable performance across various tasks. However, the study of MIM for ultrasound imaging remains relatively unexplored, and most importantly, current MIM approaches fail to account for the gap between natural images and ultrasound, as well as the intrinsic imaging characteristics of the ultrasound modality, such as the high noise-to-signal ratio. In this paper, motivated by the unique high noise-to-signal ratio property in ultrasound, we propose a deblurring MIM approach specialized to ultrasound, which incorporates a deblurring task into the pretraining proxy task.

View Article and Find Full Text PDF

Ultrasound based estimation of fetal biometry is extensively used to diagnose prenatal abnormalities and to monitor fetal growth, for which accurate segmentation of the fetal anatomy is a crucial prerequisite. Although deep neural network-based models have achieved encouraging results on this task, inevitable distribution shifts in ultrasound images can still result in severe performance drop in real world deployment scenarios. In this article, we propose a complete ultrasound fetal examination system to deal with this troublesome problem by repairing and screening the anatomically implausible results.

View Article and Find Full Text PDF

Unsupervised anomaly detection (UAD) is to detect anomalies through learning the distribution of normal data without labels and therefore has a wide application in medical images by alleviating the burden of collecting annotated medical data. Current UAD methods mostly learn the normal data by the reconstruction of the original input, but often lack the consideration of any prior information that has semantic meanings. In this paper, we first propose a universal unsupervised anomaly detection framework SSL-AnoVAE, which utilizes a self-supervised learning (SSL) module for providing more fine-grained semantics depending on the to-be detected anomalies in the retinal images.

View Article and Find Full Text PDF

Background: This study set out to develop a computed tomography (CT)-based wavelet transforming radiomics approach for grading pulmonary lesions caused by COVID-19 and to validate it using real-world data.

Methods: This retrospective study analyzed 111 patients with 187 pulmonary lesions from 16 hospitals; all patients had confirmed COVID-19 and underwent non-contrast chest CT. Data were divided into a training cohort (72 patients with 127 lesions from nine hospitals) and an independent test cohort (39 patients with 60 lesions from seven hospitals) according to the hospital in which the CT was performed.

View Article and Find Full Text PDF

Thyroid nodule segmentation and classification in ultrasound images are two essential but challenging tasks for computer-aided diagnosis of thyroid nodules. Since these two tasks are inherently related to each other and sharing some common features, solving them jointly with multi-task leaning is a promising direction. However, both previous studies and our experimental results confirm the problem of inconsistent predictions among these related tasks.

View Article and Find Full Text PDF

Purpose: This study investigates the efficiency of deep learning models in the automated diagnosis of Hashimoto's thyroiditis (HT) using real-world ultrasound data from ultrasound examinations by computer-assisted diagnosis (CAD) with artificial intelligence.

Methods: We retrospectively collected ultrasound images from patients with and without HT from 2 hospitals in China between September 2008 and February 2018. Images were divided into a training set (80%) and a validation set (20%).

View Article and Find Full Text PDF