Publications by authors named "Qingbin Li"

The development of superior non-noble-metal-based oxygen evolution reaction (OER) electrocatalysts is essential for large-scale hydrogen production. In this study, an integrated porous nanosheet NiP-NiP heterostructures were designed as an excellent OER electrocatalyst. The synthesized heterostructures demonstrated notable activity, achieving a small overpotential of 260 mV to sustain a typical 10 mA cm current density, along with exceptional durability over 2000 CV cycles.

View Article and Find Full Text PDF

-Acetylneuraminic acid (NeuAc) performs a variety of biological activities where it is used as a nutraceutical and pharmaceutical intermediate. -Acetylglucosamine-2-epimerase (AGE) and -acetylneuraminic lyase (NAL) are the most widely used key enzymes in the industrial production of NeuAc through whole-cell catalytic synthesis. However, both AGE and NAL catalyze reversible reactions, and the equilibrium of these two reactions lies between substrates and products, resulting in a lower conversion rate of NeuAc.

View Article and Find Full Text PDF

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

Filamentous fungi are important cell factories for producing chemicals, organic acids, and enzymes. Although several genome editing tools are available for filamentous fungi, few effectively enable continuous evolution for rational engineering of complex phenotype. Here, we present CRISPR-Cas9 cytidine-base-editor (CBE) assisted evolution by continuously delivering a combinatorial sgRNA library to filamentous fungi.

View Article and Find Full Text PDF

Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene ,-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (maxh: 2.

View Article and Find Full Text PDF

The development of unstable carotid atherosclerotic plaques is associated with the induction of neutrophil extracellular traps (NETs) via the activation of diverse inflammatory mediators in the circulating bloodstream. However, the underlying mechanisms through which NETs influence the microenvironment of atherosclerotic plaques and contribute to the development of unstable carotid plaques remain largely elusive. The objective of this study was to elucidate the role of myeloid differentiation protein 1 (MD-1, LY86)-induced NETs underlying the crosstalk between unstable plaque formation and the plaque microenvironment.

View Article and Find Full Text PDF

Two-component systems (TCSs) sensing and responding to various stimuli outside and inside cells are valuable resources for developing biosensors with synthetic biology applications. However, the use of TCS-based biosensors suffers from a limited effector spectrum, hypersensitivity, low dynamic range, and unwanted signal crosstalk. Here, we developed a tailor-made whole-cell γ-aminobutyric acid (GABA) biosensor by engineering a chimeric GABA chemoreceptor PctC and TCS.

View Article and Find Full Text PDF

Low-dimensional (LD) materials, with atomically thin anisotropic structures, exhibit remarkable physical and chemical properties, prominently featuring piezoelectricity resulting from the absence of centrosymmetry. This characteristic has led to diverse applications, including sensors, actuators, and micro- and nanoelectromechanical systems. While piezoelectric effects are observed across zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) LD materials, challenges such as effective charge separation and crystal structure imperfections limit their full potential.

View Article and Find Full Text PDF

It has been well proved that the introduction of halogen can effectively modify the optoelectronic properties of classic symmetric nonfullerene acceptors (NFAs). However, the relevant studies for asymmetric NFAs are limited, especially the effect of halogen substitution number and position on the photovoltaic performance is not clear. In this work, four asymmetric NFAs with A-D-A-A structure are developed by tuning the number and position of chlorine atoms on the 1,1-dicyanomethylene-3-indanone end groups, namely, A303, A304, A305, and A306.

View Article and Find Full Text PDF

The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46-67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit.

View Article and Find Full Text PDF

Polyolefin plastics, such as polyethylene (PE) and polystyrene (PS), are the most widely used synthetic plastics in our daily life. However, the chemical structure of polyolefin plastics is composed of carbon-carbon (C-C) bonds, which is extremely stable and makes polyolefin plastics recalcitrant to degradation. The growing accumulation of plastic waste has caused serious environmental pollution and has become a global environmental concern.

View Article and Find Full Text PDF

Background: The prognosis of gallbladder cancer (GBC) is dismal. This study aimed to compare the outcomes of adjuvant chemoradiotherapy (ACR) with those of surgery alone (S) and adjuvant chemotherapy (AC).

Method: The Surveillance, Epidemiology, and End Results (SEER) Program database was used to identify patients diagnosed with GBC and undergoing surgery between 2004 and 2015.

View Article and Find Full Text PDF

FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN , FeN , and FeN coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors.

View Article and Find Full Text PDF

Background: Heme has attracted much attention because of its wide applications in medicine and food. The products of genes hemBCDEFY convert 5-aminolevulinic acid to protoporphyrin IX (PPIX; the immediate precursor of heme); protoporphyrin ferrochelatase (FECH) inserts Fe into PPIX to generate heme. Biosynthesis of heme is limited by the need for optimized expression levels of multiple genes, complex regulatory mechanisms, and low enzymatic activity; these problems need to be overcome in metabolic engineering to improve heme synthesis.

View Article and Find Full Text PDF

With the continuous emergence and spread of drug-resistant and multi-drug-resistant , traditional antibiotic treatment has gradually lost its effect. There is an urgent need to develop and study new and effective bio-green inhibitors to control . In this study, the phage DZ25 was isolated from milk and the lysin LysDZ25 with excellent tolerance to serum and NaCl solution was identified.

View Article and Find Full Text PDF

Polyurethanes (PU) are one of the most used categories of plastics and have become a significant source of environmental pollutants. Degrading the refractory PU wastes using environmentally friendly strategies is in high demand. In this study, three microbial consortia from the landfill leachate were enriched using PU powder as the sole carbon source.

View Article and Find Full Text PDF
Article Synopsis
  • - Giant cell angioblastoma is a rare vascular tumor with limited studies on its clinical and imaging characteristics, featuring four reported cases involving male patients of varying ages with lesions primarily in the femur and knee area.
  • - Imaging showed either bone destruction or soft tissue invasion, with histopathology revealing nodular tissue composed of spindle-shaped cells and multinucleated giant cells, alongside specific cell markers identified through immunophenotyping.
  • - Treatment generally involves surgical resection, with one case experiencing a relapse, but there were no instances of distant metastasis or death during follow-up, suggesting it is a locally invasive tumor manageable through surgery and potentially interferons.
View Article and Find Full Text PDF

Background: Biliary tract cancers (BTCs) are a series of heterogeneous malignancies that are broadly grouped based on the anatomical site where they arise into subtypes including intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), gallbladder cancer (GBC), and ampulla of Vater cancer (AVC).

Methods And Results: The present study provides an overview of the epidemiology of the various BTCs based on data from the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2018. Distinct differences in both incidence and mortality rates were observed for these BTCs as a function of age, sex, ethnicity, and calendar year.

View Article and Find Full Text PDF

Background And Objective: Acupuncture is a promising non-pharmacological therapy for patients with prolonged disorder of consciousness (PDOC); however, its underlying mechanism remains uncertain. This study aimed to reveal the modulatory effects of acupuncture on the cerebral cortex activity among patients with PDOC.

Materials And Methods: Twenty-eight PDOC patients were randomly assigned to the treatment ( = 14) or control ( = 14) group.

View Article and Find Full Text PDF

Background: The purpose of this meta-analysis was to evaluate the efficacy of lymph node dissection in patients with intrahepatic cholangiocarcinoma (ICC).

Methods: The literature from January 2009 to December 2021 was searched to determine the comparative study of lymph node dissection and non-lymph node dissection in patients with ICC.

Results: Seventeen studies were included in the analysis.

View Article and Find Full Text PDF

Plastic waste is rapidly accumulating in the environment and becoming a huge global challenge. Many studies have highlighted the role of microbial metabolic engineering for the valorization of polyethylene terephthalate (PET) waste. In this study, we proposed a new conceptual scheme for upcycling of PET.

View Article and Find Full Text PDF

Background: β-Farnesene is a sesquiterpene with versatile industrial applications. The production of β-farnesene from waste lipid feedstock is an attractive method for sustainable production and recycling waste oil. Yarrowia lipolytica is an unconventional oleaginous yeast, which can use lipid feedstock and has great potential to synthesize acetyl-CoA-derived chemicals.

View Article and Find Full Text PDF

Due to limited time windows and technical requirements, only a small percentage of patients can receive reperfusion therapy for acute ischemic stroke (AIS). Previous studies have shown that LongShengZhi (LSZ) capsule can improve neurological outcomes in patients after AIS, yet those results have not been finally verified through rigorous randomized controlled trials. Thus, this trial was designed to further clarify the efficacy and safety of LSZ capsule for patients with AIS.

View Article and Find Full Text PDF

Surface chemical modification of carbon nanotubes can enhance the compatibility with polymers and improve flame retardancy performances. In this work, the double bond active sites were constructed on the surface of carbon nanotubes modified by the γ-methacryloyloxypropyl trimethoxysilane (KH570). Glycidyl methacrylate (GMA) was further grafted onto the surface of carbon nanotubes via free radical polymerization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhv7j4bd3ce3oetgo4j16efi957a4s95j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once