Publications by authors named "Qingbao Guan"

Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.

View Article and Find Full Text PDF

The development of high-performance polymer is crucial for the fabrication of triboelectric nanogenerators (TENGs) used in extreme conditions. Liquid crystal polyarylate thermosets (LCTs) demonstrate great potential as triboelectric material by virtue of exceptional comprehensive properties. However, there are only a few specific end-groups like phenylethynyl matching the LCT polycondensation temperature (above 300 °C).

View Article and Find Full Text PDF

There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms.

View Article and Find Full Text PDF

The limited capacity of typical materials to resist stress loading, which affects their mechanical performance, is one of the most formidable challenges in materials science. Here, we propose a bone-inspired stress-gaining concept of converting typically destructive stress into a favorable factor to substantially enhance the mechanical properties of elastomers. The concept was realized by a molecular design of dynamic poly(oxime-urethanes) network with mesophase domains.

View Article and Find Full Text PDF

Polymers are playing important roles in the rapid development of triboelectric nanogenerators (TENGs); However, most polymers cannot meet the high requirements of thermomechanical performance; Thus, various polymeric composites are developed for triboelectric layer. These composites are hardly recycled since their reinforcements are unevenly distributed after reprocessing, which limits the sustainable development of TENGs. To solve the above challenges, in situ generated nanofiber reinforced composites (NFRCs) based on single-component liquid crystal polyarylate (LCP) are designed and prepared via a one-step polycondensation.

View Article and Find Full Text PDF

Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents).

View Article and Find Full Text PDF

Anthocyanins with different structures have different anti-inflammatory and anti-cancer properties. Precise structural use can improve the chemopreventive effects of anthocyanins and enhance treatment outcomes because the anthocyanin structure influences its functional sites and activities. However, owing to the available variety of anthocyanins and their complex structures, the low matching of intermolecular forces between existing adsorbents and anthocyanins limits the targeted separation of anthocyanin monomers.

View Article and Find Full Text PDF

Through the effective combination of photothermal conversion agent polydopamine (PDA) nanoparticles and epoxy acrylate polymer (EA), a new kind of near-infrared (NIR) light-triggered shape memory polymer (PDA/EA) is developed. Due to the outstanding photothermal effect of PDA, even with a very low concentration of PDA (0.1 wt.

View Article and Find Full Text PDF

Bio-based polymers can reduce dependence on nonrenewable petrochemical resources and will be beneficial for future sustainable developments due to their low carbon footprint. In this work, the feasibility of bio-based polyamide 56 (PA56) substituting petroleum-based PA66 is systematically investigated. The crystallization, melting, and decomposition temperature of PA56 were all lower than that of PA66.

View Article and Find Full Text PDF

Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains a formidable challenge to realize three-dimensional locomotion (, , and axes) at the liquid-air two-phase interface due to the unbalanced mechanical environment.

View Article and Find Full Text PDF

Self-powered information encoding devices (IEDs) have drawn considerable interest owing to their capability to process information without batteries. Next-generation IEDs should be reprogrammable, self-healing, and wearable to satisfy the emerging requirements for multifunctional IEDs; however, such devices have not been demonstrated. Herein, an integrated triboelectric nanogenerator-based IED with the aforementioned features was developed based on the designed light-responsive high-permittivity poly(sebacoyl diglyceride--4,4'-azodibenzoyl diglyceride) elastomer (PSeDAE) with a triple-shape-memory effect.

View Article and Find Full Text PDF

Flammability is a great challenge in the fields of electronics. The emergence of triboelectric nanogenerators (TENGs) provides a safe way to harvest environmentalally friendly energy and convert it into more secure power sources. Especially, polymer-based TENGs significantly accelerate the practical application of self-powered flexible electronics.

View Article and Find Full Text PDF

Multifunctional hydrogels with excellent comprehensive performance are essential prerequisite for the implementation of effective water resources technology with high efficiency and low energy consumption. Inspired by the water purification and self-healing properties of natural plants, and based on the synergy of photothermal and biological effects, high photothermal FeO nanoparticles and natural polyhydroxy oligomeric proanthocyanidin (OPC) are introduced into a water-active polyvinyl alcohol (PVA) hydrogel. Two new bio-hydrogels of PVA/FeO/graphite and PVA/OPC with self-healing and stretchable properties are proposed and designed.

View Article and Find Full Text PDF

The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Although previous studies have focused on the design and synthesis of self-healing materials, their application in in vivo settings remains limited. Here, we design a series of biodegradable and biocompatible self-healing elastomers (SHEs) with tunable mechanical properties, and apply them to various disease models in vivo, in order to test their reparative potential in multiple tissues and at physiological conditions.

View Article and Find Full Text PDF

In this study, using molybdenum sulfide (MoS) as laser-sensitive particles and poly(propylene) (PP) as the matrix resin, laser-markable PP/MoS composite materials with different MoS contents ranging from 0.005 to 0.2% were prepared by melt-blending.

View Article and Find Full Text PDF

The existence of pre- and post-reaction complexes has been proposed to influence hydrogen abstraction reaction kinetics, but the significance still remains controversial. A theoretical study is presented to discuss the effects of complexes on hydrogen abstraction from 2-butanone by OH radicals based on the detailed PESs at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2x-D3/may-cc-pVTZ level with five pre-reaction complexes at the entrance of the channels and four post-reaction complexes at the exit. The hydrogen bond interactions, steric effects, and contributions to the bonding orbital of the OH radical species and 2-butanone species in the complex structures were visualized and investigated by wavefunction analyses.

View Article and Find Full Text PDF

The diversity of biomedical applications makes stereolithographic (SL) three-dimensional (3D) printing process complex. A strategy was developed to simulate the layer-by-layer fabrication of 3D printed products combining polymerization kinetic with reaction conditions to realize print preview. As a representative example, the typical UV-curable dental materials based on epoxy acrylate and photoinitiator with different molar ratios was exposed under varying intensity of UV light to verify the simulation results.

View Article and Find Full Text PDF

Elastomers are essential for stretchable electronics, which have become more and more important in bio-integrated devices. To ensure high compliance with the application environment, elastomers are expected to resist, and even self-repair, mechanical damage, while being friendly to the human body. Herein, inspired by peptidoglycan, we designed the first room-temperature autonomous self-healing biodegradable and biocompatible elastomers, poly(sebacoyl 1,6-hexamethylenedicarbamate diglyceride) (PSeHCD) elastomers.

View Article and Find Full Text PDF

The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance.

View Article and Find Full Text PDF

Stretchable conductive fibers are key elements for next-generation flexible electronics. Most existing conductive fibers are electron-based, opaque, relatively rigid, and show a significant increase in resistance during stretching. Accordingly, soft, stretchable, and transparent ion-conductive hydrogel fibers have attracted significant attention.

View Article and Find Full Text PDF

Cartilage defect repair remains a great clinical challenge due to the limited self-regeneration capacity of cartilage tissue. Surgical treatment of injured cartilage is rather difficult due to the narrow space in the articular cavity and irregular defect area. Herein, we designed and fabricated chondrogenic and physiological-temperature-triggered shape-memory ternary scaffolds for cell-free cartilage repair, where the poly (glycerol sebacate) (PGS) networks ensured elasticity and shape recovery, crystallized poly (1,3-propylene sebacate) (PPS) acted as switchable phase, and immobilized bioactive kartogenin (KGN) endowed the scaffolds with chondrogenic capacity.

View Article and Find Full Text PDF

Anthocyanins are a class of antioxidants extracted from plants, with a variety of biochemical and pharmacological properties. However, the wide and effective applications of anthocyanins have been limited by their relatively low stability and bioavailability. In order to expand the application of anthocyanins, FeO/anthocyanin magnetic biocomposite was fabricated for the storage and release of anthocyanin in this work.

View Article and Find Full Text PDF

Double-shelled hollow (DSH) structures with varied inorganic compositions are confirmed to have improved performances in diverse applications, especially in lithium ion battery. However, it is still of great challenge to obtain these complex nanostructures with traditional hard templates and solution-based route. Here we report an innovative pathway for the preparation of the DSH nanospheres based on block copolymer self-assembly, metal-ligand coordination and atomic layer deposition.

View Article and Find Full Text PDF

It is highly desirable, although very challenging, to develop self-healable materials exhibiting both high efficiency in self-healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)-dimethylglyoxime-urethane-complex-based polyurethane elastomer (Cu-DOU-CPU) with synergetic triple dynamic bonds is developed. Cu-DOU-CPU demonstrates the highest reported mechanical performance for self-healing elastomers at room temperature, with a tensile strength and toughness up to 14.

View Article and Find Full Text PDF