Publications by authors named "QingZhe Zhang"

Mercury (Hg) is a global pollutant of concern, and its transport and transformation are controlled by various environmental factors, with aquatic particles being an important driver. Understanding the interactions between silver nanoparticles (AgNPs) and Hg under dark condition is a prerequisite for studying the extent of AgNPs interaction with light and its participation in Hg biogeochemical cycling. Herein, under laboratory experimental setting, it was found that the reduction of divalent Hg (Hg(II)) to gaseous elemental Hg (Hg) by AgNPs readily occurred.

View Article and Find Full Text PDF
Article Synopsis
  • * BPs are commonly found in various water sources and sediments at a range of concentrations, and aquatic plants can absorb and transform these compounds, resulting in various toxic effects on their growth and function.
  • * The review emphasizes the importance of studying emerging BPA alternatives, the effects of long-term exposure, and the risks associated with consuming contaminated aquatic plants.
View Article and Find Full Text PDF
Article Synopsis
  • Perfluoroalkyl substances (PFASs) are persistent pollutants that are difficult to remove, making their degradation a priority.
  • Researchers synthesized hexagonal ZnInS (ZIS) nanosheets using a one-pot method and tested their effectiveness against a specific PFAS compound called sodium p-perfluorous nonenoxybenzenesulfonate (OBS).
  • The ZIS nanosheets outperformed traditional photocatalysts in degrading OBS under light, with their effectiveness being influenced by pH levels and the involvement of photogenerated charge carriers.
View Article and Find Full Text PDF

Conventional lateral flow immunoassay (LFIA) usually suffers from poor antimatrix interference, unsatisfactory sensitivity, and lack of quantitative ability for target analyte detection in food matrices. In response to these limits, here, multifunctional nanomaterial ZnFeO nanoparticles (ZFOs) were developed and integrated into LFIA for powerful magnetic separation/enrichment and colorimetric/photothermal target sensing. Under optimum conditions, the detection for clenbuterol (CL) with magnetic enrichment achieves 9-fold higher sensitivity compared to that without enrichment and 162-fold higher sensitivity compared to that based on traditional colloidal golds.

View Article and Find Full Text PDF

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal.

View Article and Find Full Text PDF

Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects.

View Article and Find Full Text PDF

In this study, unique BiVO-Au-CuO nanosheets (NSs) are well designed and multiple charge transfer paths are consequently constructed. The X-ray photoelectron spectroscopy measurement during a light off-on-off cycle and redox capability tests of the photo-generated charge carriers confirmed the formation of Z-scheme heterojunction, which can facilitate the charge carrier separation and transfer and maintain the original strong redox potentials of the respective component in the heterojunction. The ultrathin 2D structure of the BiVO NSs provided sufficient surface area for the photocatalytic reaction.

View Article and Find Full Text PDF

The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed.

View Article and Find Full Text PDF

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation.

View Article and Find Full Text PDF

Riverine mercury (Hg) is mainly transported to coastal areas in suspended particulate matter (SPM)-bound form, posing a potential threat to human health. Water discharge and SPM characteristics in rivers vary naturally with seasonality and can also be arbitrarily disrupted by anthropogenic regulation events, but their effects on Hg transport remain unresolved. Aiming to understand the confounding effects of seasonality and anthropogenic river regulation on Hg and SPM transport, this study selected the highly sediment-laden Yellow River as a representative conduit.

View Article and Find Full Text PDF

Transformations between dimethylmercury (DMHg) and other mercury (Hg) species have been one of the critical knowledge gaps in the Hg global biogeochemical cycle due to the lack of detailed studies. The preparation and measurement of DMHg are challenging due to the high toxicity and volatility of DMHg. In this work, we invented a new DMHg generator for successfully preparing high-purity DMHg in a highly controllable and safe way.

View Article and Find Full Text PDF

Plasmonic nanomaterials have spurred significant research interest in enhanced solar-driven photocatalysis due to their strong localized surface plasmon resonance (LSPR). As this rapid-developing research area has begun to raise and answer fundamental questions that determine the photocatalytic performance of plasmonic photocatalysts, it is an opportune time to evaluate the advancement and propose future trajectories. We first outline the fundamentals of LSPR, including its excitation, decay, and influencing factors.

View Article and Find Full Text PDF

Piezocatalysis, the process of directly converting mechanical energy into chemical energy, has emerged as a promising alternative strategy for green H production. Nevertheless, conventional inorganic piezoelectric materials suffer from limited structural tailorability and small surface area, which greatly impedes their mechanically driven catalytic efficiency. Herein, we design and fabricate a novel UiO-66(Zr)-F metal-organic framework (MOF) nanosheet for piezocatalytic water splitting, with the highest H evolution rate reaching 178.

View Article and Find Full Text PDF

Inspired by the classic ion-exchange reaction, a single phase material of MgAl(OH)(MoS)(NO)(CO)·HO (MoS-LDH) was masterly constructed by intercalating MoS into the MgAl-LDH gallery. Prepared MoS-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (q = 446.

View Article and Find Full Text PDF

Inspired by the success of dual-targeting drugs, especially bispecific antibodies, we propose to combine the concept of proteolysis targeting chimera (PROTAC) and dual targeting to design and synthesize dual PROTAC molecules with the function of degrading two completely different types of targets simultaneously. A library of novel dual-targeting PROTAC molecules has been rationally designed and prepared. A convergent synthetic strategy has been utilized to achieve high synthetic efficiency.

View Article and Find Full Text PDF

Conversion of clean solar energy to chemical fuels is one of the promising and up-and-coming applications of metal-organic frameworks. However, fast recombination of photogenerated charge carriers in these frameworks remains the most significant limitation for their photocatalytic application. Although the construction of homojunctions is a promising solution, it remains very challenging to synthesize them.

View Article and Find Full Text PDF

COVID-19 broke out in the end of December 2019 and is still spreading rapidly, which has been listed as an international concerning public health emergency. We found that the Spike protein of SARS-CoV-2 contains a furin cleavage site, which did not exist in any other betacoronavirus subtype B. Based on a series of analysis, we speculate that the presence of a redundant furin cut site in its Spike protein is responsible for SARS-CoV-2's stronger infectious nature than other coronaviruses, which leads to higher membrane fusion efficiency.

View Article and Find Full Text PDF

Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e.

View Article and Find Full Text PDF

Glutamic-oxaloacetic transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements for sustained proliferation. As such, the GOT1 inhibitor may provide a new strategy for the treatment of various cancers. Adapalene has been approved by FDA for the treatment of acne, pimples and pustules, and it may also contribute to the adjunctive therapy for advanced stages of liver and colorectal cancers.

View Article and Find Full Text PDF

Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt Fractional Derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials.

View Article and Find Full Text PDF

An effective cocatalyst is usually required to improve the performance of photoelectrochemical (PEC) water splitting catalysts. A fluorine-doped FeOOH (F:FeOOH) cocatalyst on a hematite photoanode was used to lower the onset potential by 140 mV and significantly improve the PEC performance. Moreover, a more effective dual cocatalytic system was prepared by subsequent loading of a FeNiOOH cocatalyst, which resulted in a further decrease of the onset potential by 270 mV.

View Article and Find Full Text PDF

Plasmonic Au nanoparticle (NP)-loaded hierarchical hollow porous TiO spheres are designed and synthesized with the purpose of enhancing the overall catalytic activity by introducing the Au plasmonic effect into the system, where Au NPs themselves are catalytically active. The constructed nanohybrid exhibits both high activity in 4-nitrophenol reduction, compared to all of the previously reported Au-based catalysts, and high selectivity. The synergy of the inherent catalytic property of Au NPs and the plasmonic effect (mainly via hot electron transfer) under irradiation is confirmed by a series of control experiments.

View Article and Find Full Text PDF

Performance of bulk heterojunction polymer solar cells (PSCs) highly relies on the morphology of the photoactive layer involving conjugated polymers and fullerene derivatives as donors and acceptors, respectively. Herein, butylamine was found to be able to optimize the morphology of the donor/acceptor (D/A) film composed of a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C-butyric acid methyl ester (PCBM). Compared to the commonly used alkane dithiols and halogenated additives with high boiling points, butylamine has a much lower boiling point between 77 and 79 °C, and it is also much "greener".

View Article and Find Full Text PDF

In this article, a novel route for the synthesis of graphene/TiO continuous fibers (GTF) using force-spinning combined with water vapor annealing method is reported for the first time. The morphology, structure and optical properties of the composite were fully characterized. With a single step of heat treatment process using steam at ambient conditions, we were able to initiate a series of chemical reactions, such as reduction of graphene oxide (GO), crystallization of TiO, formation of C-Ti bond, and introduction of oxygen vacancies into TiO.

View Article and Find Full Text PDF