Publications by authors named "QingSong Hu"

Epidermal growth factor receptor wild type lung adenocarcinoma (EGFR LUAD) still has limited treatment options and unsatisfactory clinical outcomes. Ferroptosis, as a form of cell death, has been reported to play a dual role in regulating tumor cell survival. In this study, we constructed a 3-ferroptosis-gene signature, FeSig, and verified its accuracy and efficacy in predicting EGFR LUAD prognosis at both the RNA and protein levels.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder that is associated with considerable morbidity. However, there is currently no drug available that has a definitive therapeutic effect on IDD. In this study, we aimed to identify the molecular features and potential therapeutic targets of IDD through a comprehensive multiomics profiling approach.

View Article and Find Full Text PDF

Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAM macrophages, and exhausted CD8 T cells around the tumor boundary.

View Article and Find Full Text PDF

Metal halide perovskites, as a new class of attractive and potential scintillators, are highly promising in X-ray imaging. However, their application is limited by the sensitivity to moisture and irradiation. To address this issue, we reported a 2D layered double perovskite material CsCdMnBiCl that exhibits high stability both under ambient condition and under X-ray irradiation.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples.

View Article and Find Full Text PDF

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs.

View Article and Find Full Text PDF

Rare earth-based halide double perovskites are regarded as an emerging class of X-ray scintillation materials. However, the majority of related scintillator applications are still focused on single crystal and powder systems; the application of nanocrystal (NC) scintillators is rarely reported. Here, we present the synthesis of high-purity CsNaTbCl NCs by an improved hot-injection method.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified.

View Article and Find Full Text PDF

Background: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS).

Methods And Results: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Organoarsenic compounds are emerging contaminants that pose environmental concerns due to their water solubility and the toxic inorganic arsenic formed during degradation.
  • Researchers developed MnFeO and a MnFeO/graphene composite to enhance the removal of these compounds, achieving a higher specific surface area in the composite (146.39 m²/g) compared to MnFeO alone (86.15 m²/g).
  • The study found that the maximum adsorption capacities for p-arsanilic acid and roxarsone were 22.75 mg/g and 30.59 mg/g, respectively, with the primary mechanisms of adsorption being electrostatic attraction and surface complexation.
View Article and Find Full Text PDF

In this paper, what we believe to be a novel class of beams, which are referred to as the spherical Gauss-Laguerre beams, are proposed. The beams propagate stably in the anomalous dispersive media, within which the second order derivative with respect to t could be combined with the two-dimensional (2D) Laplacian operator in the transverse direction and forms a three-dimensional (3D) Laplacian operator, which describes the beam propagation in the z direction within the four-dimensional (4D) x-y-z-t space-time. The wave equation is solved by the variable separation method and the analytical expression for the spherical Gauss-Laguerre beams is derived.

View Article and Find Full Text PDF

As a common molecule in biomineralization, L-aspartic acid (L-Asp) has been proven to be able to induce in vitro CaCO precipitation, but its application in sand reinforcement has never been studied. In this study, L-Asp was employed in sand reinforcement for the first time through the newly developed biomimetic carbonate precipitation (BCP) technique. Specimens with different number of BCP spray cycles were prepared, and a series of direct shear tests were conducted to investigate the impact of spray number on shear strength, critical displacement, and residual strength.

View Article and Find Full Text PDF

CO capture and storage (CCS) is an important strategy to reduce global CO emissions. This work presents both cutting-edge carbon storage tanker design, as well as novel reliability method making possible to extract useful information about the lifespan distribution of carbon capture systems from their recorded time history. The method outlined may be applied on more complex sustainable systems that are exposed to environmental stresses throughout the whole period of their planned service life.

View Article and Find Full Text PDF

The hulls of marine vehicles are generally very effective at attenuating airborne acoustic noise generated by their powertrains. However, conventional hull designs are generally not very effective at attenuating wide-band low-frequency noise. Meta-structure concepts offer an opportunity for the design of laminated hull structures tailored to address this concern.

View Article and Find Full Text PDF

It is important to understand the mechanical properties of diamond-like carbon (DLC) for use not only in frictionand wear-resistant coatings, but also in vibration reduction and damping increase at the layer interfaces. However, the mechanical properties of DLC are influenced by the working temperature and its density, and the applications of DLC as coatings are limited. In this work, we systematically studied the deformation behaviors of DLC under different temperatures and densities using compression and tensile testing of DLC by molecular dynamics (MD) methods.

View Article and Find Full Text PDF

Intrinsic dual-emission (DE) of gold nanoclusters in the near-infrared (NIR) are fascinating for fundamental importance and practical applications, but their synthesis remains a formidable challenge and sophisticated excited-state processes make elucidating DE mechanisms much more arduous. Here, we report an all-alkynyl-protected gold nanocluster, , showing a prolate Au tri-octahedral kernel surrounded by two Au(CZ-PrA) dimers, four Au(CZ-PrA) monomers, and two CZ-PrA bridges. exhibits distinguished photophysical properties including NIR DE at 820 and 940 nm, microsecond radiative relaxation, and 6.

View Article and Find Full Text PDF

The development of a highly efficient, visible-light responsive catalyst for environment purification has been a long-standing exploit, with obstacles to overcome, including inefficient capture of near-infrared photons, undesirable recombination of photo-generated carriers, and insufficient accessible reaction sites. Hence, novel carbon quantum dots (CQDs) modified PbBiOI photocatalyst were synthesized for the first time through an in-situ ionic liquid-induced method. The bridging function of 1-butyl-3-methylimidazolium iodide ([Bmim]I) guarantees the even dispersion of CQDs around PbBiOI surface, for synchronically overcoming the above drawbacks and markedly promoting the degradation efficiency of organic contaminants: (i) CQDs decoration harness solar photons in the near-infrared region; (ii) particular delocalized conjugated construction of CQDs strength via the utilization of photo-induced carriers; (iii) π-π interactions increase the contact between catalyst and organic molecules.

View Article and Find Full Text PDF

Background & Aims: The tumour microenvironment (TME) is a crucial mediator of cancer progression and therapeutic outcome. The TME subtype correlates with patient response to immunotherapy in multiple cancers. Most previous studies have focused on the role of different cellular components in the TME associated with immunotherapy efficacy.

View Article and Find Full Text PDF

In order to satisfy the requirements of wide frequency bands, the lightweight and strong absorption for the electromagnetic wave absorbing materials, a uniform mixture of FeAlO with RGO/Cu (reduction graphene oxide, RGO) was obtained by the mechanical mixing method, and composite coating was obtained by plasma spraying. The addition of RGO/Cu into FeAlO is conducive to improve the dielectric properties and the impedance matching performance of spinel. When the RGO/Cu composite powders are doped by 10 wt.

View Article and Find Full Text PDF

The low efficiency triplet emission of hybrid copper(I) iodide clusters is a critical obstacle to their further practical optoelectronic application. Herein, we present an efficient hybrid copper(I) iodide cluster emitter (DBA) Cu I , where the cooperation of excited state structure reorganization and the metallophilicity interaction enables ultra-bright triplet yellow-orange emission with a photoluminescence quantum yield over 94.9 %, and the phonon-assisted de-trapping process of exciton induces the negative thermal quenching effect at 80-300 K.

View Article and Find Full Text PDF

Background: Most deaths from coronary artery disease (CAD) are due to acute myocardial infarction (AMI). There is an urgent need for early AMI detection, particularly in patients with stable CAD. 5-methylcytosine (5mC) regulatory genes have been demonstrated to involve in the progression and prognosis of cardiovascular diseases, while little research examined 5mC regulators in CAD to AMI progression.

View Article and Find Full Text PDF

In this paper, the corrosion resistances of Mg-Nd binary alloys with various contents of the neodymium (Nd) element in sulfate-reducing bacteria (SRB) were studied. In the SRB medium, the results of weight loss experiments showed that the increase in the MgNd phase in the alloy increased the galvanic corrosion and the corrosion rate. However, when the continuous network distribution of the second phase formed, the corrosion resistance of the alloy improved.

View Article and Find Full Text PDF

This paper demonstrates the validity of the Naess-Gadai method for extrapolating extreme value statistics of second-order Volterra series processes through application on a representative model of a deep water small size tension leg platform (TLP), with specific focus on wave sum frequency effects affecting restrained modes: heave, roll and pitch. The wave loading was estimated from a second order diffraction code WAMIT, and the stochastic TLP structural response in a random sea state was calculated exactly using Volterra series representation of the TLP corner vertical displacement, chosen as a response process. Although the wave loading was assumed to be a second order (non-linear) process, the dynamic system was modelled as a linear damped mass-spring system.

View Article and Find Full Text PDF