Publications by authors named "QingShui Wang"

Background: Gastric cancer remains a common malignancy with poor prognosis. While lactate metabolism is recognized as a significant factor in tumor progression, its potential as a predictive tool for treatment response remains unexplored. This study introduces a novel Lactate-Related Gene Signature (LRGS) designed to predict both survival outcomes and therapy responses in gastric cancer patients.

View Article and Find Full Text PDF

Colorectal cancer remains a formidable global health challenge, characterized by high recurrence rates and poor prognosis. This study introduces a novel Recurrence Related Gene Signature (RRGS), designed to predict therapy response and enhance prognostic accuracy in colorectal cancer. Through analysis of the GSE17536 cohort, we identified 79 differentially expressed genes (DEGs) between recurrent and non-recurrent cases, comprising 54 upregulated and 25 downregulated genes.

View Article and Find Full Text PDF

We have previously found that the DAPK-DDX20 signaling axis exerts an anti-cancer activity in hepatocellular carcinoma (HCC) by inhibiting the GTPase activity of CDC42, thereby reducing the invasive and migratory capabilities of cancer cells without affecting cell proliferation. DDX20 serves as an intermediate protein regulated by DAPK in the control of CDC42. Specifically, DAPK enhances DDX20 protein levels by suppressing DDX20 degradation.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is known for its aggressive nature, lack of effective diagnostic tools and treatments, and generally poor prognosis. The objective of this study was to investigate metabolic changes in TNBC using metabolomics approaches and explore the underlying mechanisms through integrated analysis with transcriptomics. In this study, serum untargeted metabolic profiles were first examined between 18 TNBC patients and 21 healthy control (HC) subjects using liquid chromatography-mass spectrometry (LC-MS), identifying a total of 22 significantly differential metabolites (DMs).

View Article and Find Full Text PDF

Background: The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures.

Methods: The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes.

View Article and Find Full Text PDF

Bladder cancer is a prevalent malignancy with significant clinical implications. Small Ubiquitin-like Modifier (SUMO) pathway related genes (SPRG) have been implicated in the development and progression of cancer. In this study, we conducted a comprehensive analysis of SPRG in bladder cancer.

View Article and Find Full Text PDF

Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging.

View Article and Find Full Text PDF
Article Synopsis
  • Endoplasmic reticulum stress (ERS) is triggered by misfolded proteins in the tumor environment, affecting lung adenocarcinoma (LUAD) progression, particularly through the role of long non-coding RNAs (lncRNAs).* -
  • The study identified nine lncRNAs related to ERS, with five functioning as protective factors and four as risk factors, which were used to create a risk prediction model for overall survival in LUAD patients.* -
  • Analysis showed that high-risk (HS) patients had worse outcomes due to advanced tumors and poor response to treatment, while one notable lncRNA, RP11-295G20.2, was found to be a potential therapeutic target and biomarker
View Article and Find Full Text PDF

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear.

View Article and Find Full Text PDF

Bladder cancer (BLCA) is the most common genitourinary malignancy. Proliferation essential genes (PEGs) are crucial to the survival of cancer cells. This study aimed to build a PEG signature to predict BLCA prognosis and treatment efficacy.

View Article and Find Full Text PDF

Background: Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC.

Methods: Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort.

View Article and Find Full Text PDF

Background: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach.

Methods: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30).

View Article and Find Full Text PDF

Rapid and accurate identification of tumor metabolic markers is important for early tumor diagnosis and individualized treatment. Here, a stable monodisperse sub-nanometer platinum (Pt) material was developed as a highly efficient nanozyme with a specific activity of peroxidase as high as 20.86 U mg through the growth of in situ domain-limited Pt quantum dots via the polymer polyvinylpyrrolidone.

View Article and Find Full Text PDF

Gastric cancer peritoneal metastases (GCPM) are a leading cause of death in gastric cancer patients. In this study, we focused on the expression of cyclin-dependent protein kinases (CDK), essential regulators of transcription, metabolism, and cell differentiation, in GCPM. Utilizing the GSE62254 cohort, we established a CDK signature (CDKS) model comprising ten CDK gene family members.

View Article and Find Full Text PDF

Gastric cancer peritoneal metastases (GCPM) is a leading cause of GC-related death. Early detection of GCPM is critical for improving the prognosis of advanced GC. Differentially expressed genes (DEGs) were identified in the GSE62254 database to distinguish between GCPM and non-GCPM.

View Article and Find Full Text PDF

N-methyladenosine modification and lncRNAs are closely related to the prognosis and immunotherapy response of breast cancer patients. LncRNAs related to m A-associated genes were predicted based on coexpression analysis of the TCGA database. We established a novel 7-m A-associated lncRNA signature for predicting patient prognosis and validated it.

View Article and Find Full Text PDF

Liver cancer is a prevalent type of tumor worldwide. CRISPR-Cas9 technology can be utilized to identify therapeutic targets for novel therapeutic approaches. In this study, our goal was to identify key genes related to the survival of hepatocellular carcinoma (HCC) cells by analyzing the DepMap database based on CRISPR-Cas9.

View Article and Find Full Text PDF

Background: The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification.

View Article and Find Full Text PDF

FNDC5 belongs to the family of proteins called fibronectin type III domain-containing which carry out a variety of functions. The expression of FNDC5 is associated with the occurrence and development of tumors. However, the role of FNDC5 in gastric cancer remains relatively unknown.

View Article and Find Full Text PDF

Gastric cancer (GC) is a common upper gastrointestinal tumor. Death-associated protein kinase (DAPK1) was found to participate in the development of various malignant tumors. However, there are few reports on DAPK1 in gastric cancer.

View Article and Find Full Text PDF

Background: Renal cell carcinoma (RCC) is the seventh most common cancer in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the majority. Recently, although there have been significant breakthroughs in the treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many cancers and plays a carcinogenic role.

View Article and Find Full Text PDF

Background: Osteosarcoma is one of the most malignant tumors, and it occurs mostly in children and adolescents. Currently, surgery and chemotherapy are the main treatments. The recurrence rate is high and the prognosis is often poor.

View Article and Find Full Text PDF

The genome-wide CRISPR-cas9 dropout screening has emerged as an outstanding approach for characterization of driver genes of tumor growth. The present study aims to investigate core genes related to clear cell renal cell carcinoma (ccRCC) cell viability by analyzing the CRISPR-cas9 screening database DepMap, which may provide a novel target in ccRCC therapy. Candidate genes related to ccRCC cell viability by CRISPR-cas9 screening from DepMap and genes differentially expressed between ccRCC tissues and normal tissues from TCGA were overlapped.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. Finding more therapeutic targets for advanced ccRCC is an urgent mission. The minichromosome maintenance proteins 2-7 (MCM2-7) protein forms a stable heterohexamer and plays an important role in DNA replication in eukaryotic cells.

View Article and Find Full Text PDF