Publications by authors named "QingLiang Wu"

Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12-hydroxylation of C BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA).

View Article and Find Full Text PDF

The most common site of metastasis in breast cancer is the bone, where the balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation is disrupted. This imbalance causes osteolytic bone metastasis in breast cancer, which leads to bone pain, pathological fractures, spinal cord compression, and other skeletal-related events (SREs). These complications reduce patients' quality of life significantly and have a profound impact on prognosis.

View Article and Find Full Text PDF

Cytochrome P450 3A (CYP3A), the most important class of drug-metabolizing enzymes, participates in the metabolism of half of clinically used drugs. The CYP3A index reactions of dogs, one of the most widely used preclinical nonrodent species, are still poorly understood. This work evaluated the activity and selectivity of 10 CYP3A index reactions, including midazolam (MDZ) 1'- and 4-hydroxylation, alprazolam (APZ) and triazolam (TRZ) - and 4-hydroxylation, testosterone (T) 6-hydroxylation, lithocholate (LCA) 6-hydroxylation, deoxycholate (DCA) 1- and 5-hydroxylation, with quantitative reaction phenotyping and kinetic analysis in human and canine recombinant CYP enzymes (rCYPs).

View Article and Find Full Text PDF

Drug induced cholestasis (DIC) is complexly associated with dysbiosis of the host-gut microbial cometabolism of bile acids (BAs). Murine animals are not suitable for transitional studies because the murine BA metabolism is quite different from human metabolism. In this work, the rifampicin (RFP) induced cholestasis was established in beagle dogs that have a humanlike BA profile to disclose how RFP affects the host-gut microbial cometabolism of BAs.

View Article and Find Full Text PDF

Deoxycholic acid (DCA, 3, 12-dihydroxy-5-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1,3,12-trihydroxy-5-cholan-24-oic acid (DCA-1-ol) and 3,5,12-trihydroxy-5-cholan-24-oic acid (DCA-5-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1-ol and DCA-5-ol in dog liver microsomes.

View Article and Find Full Text PDF