In order to promote power conversion efficiency and reduce energy loss, we propose a perovskite solar cell based on cylindrical MAPbI3 microstructure composed of a MAPbI perovskite layer and a hole transport layer (HTL) composed of PEDOT:PSS. According to the charge transport theory, which effectually increases the contact area of the HTL, promoting the electronic transmission capability, the local field enhancement and scattering effects of the surface plasmon polaritons help to couple the incident light to the solar cell, which can increase the absorption of light in the active layer of the solar cell and improve its light absorption efficiency (LAE). based on simulation results, a cylindrical microstructure of the perovskite layer increases the contact area of the hole transport layer, which could improve light absorption, quantum efficiency (QE), short-circuit current density (J), and electric power compared with the perovskite layer of other structures.
View Article and Find Full Text PDFIn this paper, we introduce an entirely new solar absorber design-a multi-layer periodic stacked structure. Through coupling effects, this design has perfect ultra-wideband absorption characteristics. The absorber structure is composed of four absorption units with varying cycle lengths, which are cyclically stacked on the surface of the refractory metal Cr.
View Article and Find Full Text PDFBreast cancer is the most frequently diagnosed and fatal cancer among women worldwide. Dairy protein-derived peptides and dairy products are important parts of the daily human diet and have shown promising activities in suppressing the proliferation, migration, and invasion of breast cancer cells, both and . Most of the review literature employs meta-analysis methods to explore the association between dairy intake and breast cancer risk.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
In this article, we present a terahertz (THz) metamaterial absorber that blends two types of coordinated materials: Dirac semimetals and vanadium dioxide. Compared to other absorbers on the market, which are currently non-adjustable or have a single adjustment method, our absorber is superior because it has two coordinated modes with maximum adjustment ranges of 80.7% and 0.
View Article and Find Full Text PDFThe combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp.
View Article and Find Full Text PDFMetamaterial absorbers show great potential in many scientific and technological applications by virtue of their sub-wavelength and easy-to-adjust structure, with bandwidth as an important standard to measure the performance of the absorbers. In this study, our team designed a new broadband absorber, which consists of an indium arsenide (InAs) disk at the top, a zinc selenide (ZnSe)-chromium (Cr) stacked disk in the middle and a metal film at the bottom. Simulation results show that the absorber has remarkable absorptivity properties in the mid-long infrared band.
View Article and Find Full Text PDFTo develop alternative plasmonic materials for nanophotonic applications, the thickness-dependent optical properties of ultrathin plasmonic SrNbO (SNO) films deposited on MgO are investigated. As the thickness decreases from 10 to 2 nm, the film exhibits less metallic, epsilon-near-zero (ENZ) wavelength redshift and higher optical loss due to increased scattering. Nevertheless, the thinnest film still has a high carrier concentration of 10cm, and the real part of the dielectric functions of all films is less than zero in the near-infrared (NIR) wavelength region, indicating that the samples possess relatively high metallicity and plasmonic characteristics in the NIR.
View Article and Find Full Text PDFIn recent years, solar energy has become popular because of its clean and renewable properties. Meanwhile, two-dimensional materials have become a new favorite in scientific research due to their unique physicochemical properties. Among them, monolayer molybdenum disulfide (MoS), as an outstanding representative of transition metal sulfides, is a hot research topic after graphene.
View Article and Find Full Text PDFIn this paper, we propose a multiband adjustable metamaterial absorption device based on a Dirac semimetal (BDS) AlCuFe and a thermally controlled phase-change material VO. The absorption device has an axially symmetric structure, resulting in polarization-independent characteristics, and when VO is in a high-temperature metal state, ultra-high absorption rates and sensitives at frequencies of = 2.89 THz, = 7.
View Article and Find Full Text PDFSingle-nucleotide polymorphisms (SNPs) are widely used as molecular markers for constructing genetic linkage maps in wheat. Compared with available SNP-based genotyping platforms, a genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology has become the favored genotyping technology because it is less demanding and more cost effective, flexible, and user-friendly. In this study, a new GenoBaits WheatSNP16K (GBW16K) GBTS array was designed using datasets generated by the wheat 660K SNP array and resequencing platforms in our previous studies.
View Article and Find Full Text PDFIn recent years, absorbers related to metamaterials have been heavily investigated. In particular, VO materials have received focused attention, and a large number of researchers have aimed at multilayer structures. This paper presents a new concept of a three-layer simple structure with VO as the base, silicon dioxide as the dielectric layer, and graphene as the top layer.
View Article and Find Full Text PDFTwo-dimensional (2D) bismuth selenium (BiSe) nanosheets have exceptional surface area and superior surface modification capabilities, facilitating the effective loading of nanoprobes, metal particles, and other substances. Additionally, thiolated ultrasmall gold nanoclusters (Au NCs), distinguished by their high photoluminescent activity and modulatable surface charges, enable efficient loading onto the 2D BiSe surfaces. In this study, we successfully prepared BiSe nanosheets by sonication-assisted liquid phase exfoliation and loaded Au clusters on their surface through an amide bond reaction.
View Article and Find Full Text PDFIn this paper, a broadband solar absorber is constructed and simulated based on the finite difference time domain method (FDTD). The modeled structure of the absorber consists of cyclic stacking of five absorber cells with different periods on refractory metal W, where a single absorber cell is composed of a three-layer SiO-InAs-TiN square film. Due to the Fabry-Perot resonance and the surface plasmon resonance (SPR), an absorptivity greater than 90% within a bandwidth of 2599.
View Article and Find Full Text PDFWheat stripe rust is a destructive disease worldwide, caused by f. sp. ().
View Article and Find Full Text PDFDeafness mainly results from irreversible impairment of hair cells (HCs), which may relate to oxidative stress, yet therapeutical solutions is lacked due to limited understanding on the exact molecular mechanism. Herein, mimicking the molecular structure of natural enzymes, a palladium (Pd) single-atom nanozyme (SAN) was fabricated, exhibiting superoxide dismutase and catalase activity, transforming reactive oxygen species (ROS) into O and HO. We examined the involvement of Pd in neomycin-induced HCs loss in vitro and in vivo over zebrafish.
View Article and Find Full Text PDFUtilizing the phase transition principle of VO, this paper presents a tunable ultra-wideband terahertz perfect absorption device with simple structure and tunability. The proposed broadband terahertz perfect absorption device is a three-layer structure with a metal reflective layer, a silicon dioxide dielectric layer and a VO layer from bottom to top. It was found that the terahertz perfect absorption device's absorption could be dynamically adjusted from 1.
View Article and Find Full Text PDFStay-green (SG) in wheat is a beneficial trait that increases yield and stress tolerance. However, conventional phenotyping techniques limited the understanding of its genetic basis. Spectral indices (SIs) as non-destructive tools to evaluate crop temporal senescence provide an alternative strategy.
View Article and Find Full Text PDFFusarium head blight (FHB) is a devastating disease that occurs in warm and humid environments. The German wheat 'Centrum' has displayed moderate to high levels of FHB resistance in the field for many years. In this study, an F recombinant inbred line (RIL) population derived from cross 'Centrum' × 'Xinong 979' was evaluated for FHB response following point inoculation in five environments.
View Article and Find Full Text PDF