Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S) lignin is lineage specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis.
View Article and Find Full Text PDFMitochondrial DNA B Resour
July 2022
Bordères & Gaussen 1947 is endemic to China, where it is distributed at 3300-4000 meters in the mountains of Southwest Sichuan and Northwest Yunnan. In this study, the complete chloroplast genome of was reconstructed by assembly using whole-genome sequencing data. The complete chloroplast genome of was 120,049 bp in length with a GC content of 37.
View Article and Find Full Text PDFHere, through single-molecule real-time sequencing, we present a high-quality genome sequence of the Japanese larch (Larix kaempferi), a conifer species with great value for wood production and ecological afforestation. The assembled genome is 10.97 Gb in size, harboring 45,828 protein-coding genes.
View Article and Find Full Text PDFSecondary cell wall (SCW) formation is regulated by a multilevel transcriptional regulatory network, in which MYB transcription factors (TFs) play key roles. In woody plants, hundreds of MYB TFs have been identified, most of which have unknown functions in wood SCW biosynthesis. Here, we characterized the function of a Populus MYB gene, PtoMYB10.
View Article and Find Full Text PDFEnzymes are essential components of all biological systems. The key characteristics of proteins functioning as enzymes are their substrate specificities and catalytic efficiencies. In plants, most genes encoding enzymes are members of large gene families.
View Article and Find Full Text PDFBackgrounds: Populus and Salix belong to Salicaceae and are used as models to investigate woody plant physiology. The variation of karyotype and nuclear DNA content can partly reflect the evolutionary history of the whole genome, and can provide critical information for understanding, predicting, and potentially ameliorating the woody plant traits. Therefore, it is essential to study the chromosome number (CN) and genome size in detail to provide information for revealing the evolutionary process of Salicaceae.
View Article and Find Full Text PDFIron (Fe) is an essential micronutrient for plant survival and proliferation. Plants have evolved complex mechanisms to maintain Fe homeostasis in response to Fe deficiency. In this study, we evaluated the physiological, biochemical and transcriptomic differences between poplars grown under Fe-sufficient and Fe-deficient conditions to elucidate the mechanistic responses of poplars to Fe deficiency.
View Article and Find Full Text PDFThe white poplar (Populus alba) is widely distributed in Central Asia and Europe. There are natural populations of white poplar in Irtysh River basin in China. It also can be cultivated and grown well in northern China.
View Article and Find Full Text PDFSuperoxide dismutase is a key enzyme that scavenges superoxide anion and plays vital roles in plant antioxidant system. This study identified six SOD genes from the deciduous conifer Larix kaempferi, which is widely distributed across the cooler regions of the northern hemisphere. These six SOD genes were classified into three types: Cu/Zn-SOD (LkSOD1, 2, 3 and 4), Fe-SOD (LkSOD5) and Mn-SODs (LkSOD6).
View Article and Find Full Text PDFA common assumption in comparative genomics is that orthologous genes are functionally more similar than paralogous genes. However, the validity of this assumption needs to be assessed using robust experimental data. We conducted tissue-specific gene expression and protein function analyses of orthologous groups within the glutathione S-transferase (GST) gene family in three closely related Populus species: Populus trichocarpa, Populus euphratica and Populus yatungensis.
View Article and Find Full Text PDFGlutathione S-transferases are ubiquitous enzyme in plants, playing vital roles in several physiological and developmental processes. In this study we identified 73 GST genes from the genome of Medicago truncatula. The Medicago GSTs were divided to eight classes with tau and phi being the most numerous.
View Article and Find Full Text PDFUDP-xylose (UDP-Xyl) is synthesized by UDP-glucuronic acid decarboxylases, also termed UDP-Xyl synthases (UXSs). The Arabidopsis genome encodes six UXSs, which fall into two groups based upon their subcellular location: the Golgi lumen and the cytosol. The latter group appears to play an important role in xylan biosynthesis.
View Article and Find Full Text PDFEvolutionary mechanisms of substrate specificities of enzyme families remain poorly understood. Plant SABATH methyltransferases catalyze methylation of the carboxyl group of various low molecular weight metabolites. Investigation of the functional diversification of the SABATH family in plants could shed light on the evolution of substrate specificities in this enzyme family.
View Article and Find Full Text PDFExtensive subfunctionalization might explain why so many genes have been maintained after gene duplication, which provides the engine for gene family expansion. However, it is still a particular challenge to trace the evolutionary dynamics and features of functional divergences in a supergene family over the course of evolution. In this study, we identified 49 Glutathione S-transferase (GST) genes from the Capsella rubella, a close relative of Arabidopsis thaliana and a member of the mustard family.
View Article and Find Full Text PDFWhole-genome duplication (WGD), or polyploidy, is a major force in plant genome evolution. A duplicate of all genes is present in the genome immediately following a WGD event. However, the evolutionary mechanisms responsible for the loss of, or retention and subsequent functional divergence of polyploidy-derived duplicates remain largely unknown.
View Article and Find Full Text PDFAnthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear.
View Article and Find Full Text PDFDetermining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P.
View Article and Find Full Text PDFGene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions.
View Article and Find Full Text PDFPlant Physiol Biochem
April 2014
Glutathione transferases (GSTs), which are ubiquitous in plants, play a major role in the detoxification of xenobiotics and oxidative stress metabolism. Due to their role in herbicide detoxification, previous studies of plant GSTs have mainly focused on agricultural plants. In contrast, functional information regarding gymnosperm GSTs is scarce.
View Article and Find Full Text PDFPhylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions.
View Article and Find Full Text PDFPlant polygalacturonases (PGs) are involved in cell separation processes during many stages of plant development. Investigation into the diversification of this large gene family in land plants could shed light on the evolution of structural development. We conducted whole-genome annotation, molecular evolution and gene expression analyses of PG genes in five species of land plant: Populus, Arabidopsis, rice, Selaginella and Physcomitrella.
View Article and Find Full Text PDFPlant glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family that play major roles in the detoxification of xenobiotics and oxidative stress metabolism. To date, studies on the GST gene family have focused mainly on vascular plants (particularly agricultural plants). In contrast, little information is available on the molecular characteristics of this large gene family in nonvascular plants.
View Article and Find Full Text PDFTrehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Plant TPS proteins contain both a TPS and a trehalose-6-phosphate phosphatase (TPP) domain, which are coded by a multi-gene family. The plant TPS gene family has been divided into class I and class II.
View Article and Find Full Text PDFPinus densata is an ecologically successful homoploid hybrid that inhabits vast areas of heterogeneous terrain on the south-eastern Tibetan Plateau as a result of multiple waves of colonization. Its region of origin, route of colonization onto the plateau and the directions of introgression with its parental species have previously been defined, but little is known about the isolation and divergence history of its populations. In this study, we surveyed nucleotide polymorphism over eight nuclear loci in 19 representative populations of P.
View Article and Find Full Text PDF