Publications by authors named "Qing-wei Meng"

Traditional desalination methods face criticism due to high energy requirements and inadequate trace ion removal, whereas natural light-driven ion pumps offer superior efficiency. Current synthetic systems are constrained by short exciton lifetimes, which limit their ability to generate sufficient electric fields for effective ion pumping. We introduce an innovative approach utilizing covalent-organic framework membranes that enhance light absorption and reduce charge recombination through vertical gradient protonation of imine linkages during acid-catalyzed liquid-liquid interfacial polymerization.

View Article and Find Full Text PDF

Advancing membranes with enhanced solute-solute selectivity is essential for expanding membrane technology applications, yet it presents a notable challenge. Drawing inspiration from the unparalleled selectivity of biological systems, which benefit from the sophisticated spatial organization of functionalities, we posit that manipulating the arrangement of the membrane's building blocks, an aspect previously given limited attention, can address this challenge. We demonstrate that optimizing the face-to-face orientation of building blocks during the assembly of covalent-organic-framework (COF) membranes improves ion-π interactions with multivalent ions.

View Article and Find Full Text PDF

Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments.

View Article and Find Full Text PDF

Membrane reactors are known for their efficiency and superior operability compared to traditional batch processes, but their limited diversity poses challenges in meeting various reaction requirements. Herein, we leverage the molecular tunability of covalent organic frameworks (COFs) to broaden their applicability in membrane reactors. Our COF membrane demonstrates an exceptional ability to achieve complete conversion in just 0.

View Article and Find Full Text PDF

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li and Mg ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels.

View Article and Find Full Text PDF

The evolution of porous membranes has revitalized their potential application in sustainable osmotic-energy conversion. However, the performance of multiporous membranes deviates significantly from the linear extrapolation of single-pore membranes, primarily due to the occurrence of ion-concentration polarization (ICP). This study proposes a robust strategy to overcome this challenge by incorporating photoelectric responsiveness into permselective membranes.

View Article and Find Full Text PDF

Numerous chemical transformations require two or more catalytically active sites that act in a concerted manner; nevertheless, designing heterogeneous catalysts with such multiple functionalities remains an overwhelming challenge. Herein, it is shown that by the integration of acidic flexible polymers and Pd-metallated covalent organic framework (COF) hosts, the merits of both catalytically active sites can be utilized to realize heterogeneous synergistic catalysis that are active in the conversion of nitrobenzenes to carbamates via reductive carbonylation. The concentrated catalytically active species in the nanospace force two catalytic components into proximity, thereby enhancing the cooperativity between the acidic species and Pd species to facilitate synergistic catalysis.

View Article and Find Full Text PDF

Background: Postoperative skeletal muscle loss (SM loss) was reported to be associated with a poor prognosis in early-stage non-small cell lung cancer (NSCLC). Small airway dysfunction (SAD) is a common but neglected respiratory abnormality. Little information is known about the association between preoperative SAD and postoperative SM loss in early-stage NSCLC.

View Article and Find Full Text PDF

Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes.

View Article and Find Full Text PDF

Acids are extensively used in contemporary industries. However, time-consuming and environmentally unfriendly processes hinder single-acid recovery from wastes containing various ionic species. Although membrane technology can overcome these challenges by efficiently extracting analytes of interest, the associated processes typically exhibit inadequate ion-specific selectivity.

View Article and Find Full Text PDF

Objective: To analyze the factors related to pregnancy of endometriosis and whether Chinese herbal medicines (CHMs) can improve pregnancy outcomes in patients with endometriosis in long-term management.

Methods: This multicenter cohort study retrospectively analyzed the clinical data of endometriosis patients with fertility needs from January 2019 to November 2019. A total of 252 patients with endometriosis from 5 level-III Grade A hospitals in Beijing were included in this study.

View Article and Find Full Text PDF

The demand to improve the chlorine resistance of polyamide (PA) membranes is escalated with greater amounts of chlorine-containing disinfectant being used in global water treatment during the COVID-19 pandemic. In this work, we designed thiophene-functionalized poly(ethyleneimine) (TPEI) materials first and grafted them onto a conventional PA membrane to develop novel nanofiltration membranes (PEI-M, TPEI-1-M, TPEI-2-M). These membranes have dual-functionalized selective surfaces covered by hydrophilic amino groups and electron-rich thiophene moieties, which endow these membranes with superior chlorine resistance and improved separation performance.

View Article and Find Full Text PDF
Article Synopsis
  • - Bronchiectasis is a complex respiratory disease with varying prevalence across different regions, and the BE-China study aims to gather extensive data on its characteristics and progression specifically in China to compare with Western studies.
  • - This ongoing study, launched in January 2020, seeks to recruit over 10,000 patients and will collect detailed medical and lifestyle data over a span of up to 10 years, along with biological specimens for further research.
  • - Preliminary results show that by October 2021, the BE-China study had enrolled 3,758 patients and collected valuable biological samples, highlighting a strong foundation for understanding bronchiectasis in the Chinese population.
View Article and Find Full Text PDF

Increasing the charge density of ionic membranes is believed to be beneficial for generating high output osmotic energy. Herein, we systematically investigated how the membrane charge populations affect permselectivity by decoupling their effects from the impact of the pore structure using a multivariate strategy for constructing covalent-organic-framework membranes. The thermo-osmotic energy conversion efficiency is improved by increasing the membrane charge density, affording 210 W m with a temperature gradient of 40 K.

View Article and Find Full Text PDF

A vast amount of energy can be extracted from the untapped low-grade heat from sources below 100 °C and the Gibbs free energy from salinity gradients. Therefore, a process for simultaneous and direct conversion of these energies into electricity using permselective membranes was developed in this study. These membranes screen charges of ion flux driven by the combined salinity and temperature gradients to achieve thermo-osmotic energy conversion.

View Article and Find Full Text PDF

With the advancement of tumor subtype-specific treatments, precise histopathologic distinction between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) is of significant clinical importance. Nevertheless, the current markers are insufficiently precise in poorly differentiated tissue. This study aimed to establish a histology-specific immunomarker combination to subclassify non-small cell lung cancer (NSCLC) specimens.

View Article and Find Full Text PDF

Water contaminated with low concentrations of pollutants is more difficult to clean up than that with high pollutant content levels. Membrane separation provides a solution for removing low pollutant content from water. However, membranes are prone to fouling, losing separation performances over time.

View Article and Find Full Text PDF

Poor resistance to free chlorine severely impairs the service of conventional polyamide (PA) membrane in water treatment. Here we design a series of superhydrophilic aromatic sulfonate materials (ASMs) comprising successively increasing conjugated systems and ionizable groups (ASM-1, ASM-2, ASM-3) to develop a chlorine-resistant membrane via chemical modification. By altering the membrane physicochemical properties and surface structure, ASMs substantially improve the chlorine resistance and water permeability of membrane.

View Article and Find Full Text PDF

Objective: To evaluate the efficacy and safety of Chinese medicine (CM) improving pregnancy outcomes after surgery for endometriosis-associated infertility.

Methods: A multicenter, randomized, double-blind placebo parallel controlled clinical trial was designed. A total of 202 patients who had laparoscopy for endometriosis-associated infertility with qi stagnation and blood stasis syndrome were included and randomly divided into the CM treatment group and placebo control group at a ratio of 1:1 using a central block randomization from May 2014 to September 2017, 101 patients in each group.

View Article and Find Full Text PDF

A novel and facile visible-light-mediated alkylation of indoles and nitroalkenes has been developed. In this protocol, rose bengal acts as a photosensitizer, and environmentally benign water was used as the green and efficient reaction medium. Indoles reacted smoothly with nitroalkenes under the irradiation of visible-light and generated corresponding 3-(2-nitroalkyl)indoles in moderate to good yields (up to 87%).

View Article and Find Full Text PDF

A series of C-2' modified cinchonine-derived phase-transfer catalysts were synthesized and used in the enantioselective photo-organocatalytic aerobic oxidation of β-dicarbonyl compounds with excellent yields (up to 97%) and high enantioselectivities (up to 90% ee). Furthermore, the reaction was carried out in a flow photomicroreactor, in which the heterogeneous gas-liquid-liquid asymmetric photocatalytic oxidation reaction was performed affording good yields (up to 97%) and enantioselectivities (up to 86% ee) within 0.89 min.

View Article and Find Full Text PDF

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive.

View Article and Find Full Text PDF