Publications by authors named "Qing-hui Chen"

This study investigates the impact of single prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD), on cardiovascular responses, hypothalamic paraventricular nucleus (PVN) activity, and vascular function to elucidate the mechanisms linking traumatic stress to hypertension. Although SPS did not directly cause chronic hypertension in male Sprague Dawley (SD) rats, it induced acute but transient increases in blood pressure and heart rate and significantly altered the expression of hypertension-associated genes, such as vasopressin, angiotensin II type 1 receptor (AT1R), and FOSL1 in the PVN. Notably, mitochondrial reactive oxygen species (mtROS) were predominantly elevated in the pre-autonomic regions of the PVN, colocalizing with AT1R- and FOSL1-expressing cells, suggesting that oxidative stress may amplify sympathetic activation and stress responses.

View Article and Find Full Text PDF

Neuroinflammation and brain oxidative stress are recognized as significant contributors to hypertension including salt sensitive hypertension. Extracellular vesicles (EVs) play an essential role in intercellular communication in various situations, including physiological and pathological ones. Based on this evidence, we hypothesized that EVs derived from the brains of hypertensive rats with salt sensitivity could trigger neuroinflammation and oxidative stress during hypertension development.

View Article and Find Full Text PDF
Article Synopsis
  • Acetic acid is a byproduct of ethanol metabolism and has been linked to oxidative stress and changes in neuron function.
  • Administration of acetic acid/acetate can increase sympathetic nervous system activity, which may affect blood pressure regulation.
  • Researchers can explore the effects of ethanol and acetic acid on cardiovascular function by directly injecting these substances into brain control centers and measuring the resultant changes in nerve activity and blood pressure.
View Article and Find Full Text PDF

The central nucleus of the amygdala (CeA) is a key brain region involved in emotional and stressor responses due to its many projections to autonomic regulatory centers. It is also a primary site of action from ethanol consumption. However, the influence of active metabolites of ethanol such as acetate on the CeA neural circuitry has yet to be elucidated.

View Article and Find Full Text PDF

Background: Hand, foot, and mouth disease (HFMD) caused by coxsackievirus A6 (CV-A6) has become prevalent in many parts of the world. It is commonly referred to as atypical HFMD which more likely to present as bullous lesions. Compared with traditional HFMD, its misdiagnosis rate is relatively high, which brings difficulties to clinical diagnosis.

View Article and Find Full Text PDF

The types and intensity of anthropogenic pressure in the same sea area may differ spatially and may change as time passes, but response of benthic biotic indices to different pressure is different, which makes it unreasonable to use the same benthic biotic indices in a large sea area. We provided a new way of thinking as to selecting benthic biotic indices according to pressure type. The study took six bays under eutrophication and sediment heavy metal pollution to different levels in Fujian coastal water, East China sea, as examples, analysed the response of five benthic biotic indices, namely AZTI marine biotic index (AMBI), multivariate AMBI (M-AMBI), Shannon-Wiener diversity index (H'), benthic opportunistic polychaetes amphipods (BOPA) and benthic polychaetes amphipods (BPA), to eutrophication factors and sediment heavy metal pollution factors firstly.

View Article and Find Full Text PDF

Salt-sensitivity is a major factor in the development of hypertension. The brain orexin system has been observed to play a role in numerous hypertensive animal models. However, orexin's role in the pathology of salt-sensitive hypertension (SSH) remains to be adequately explored.

View Article and Find Full Text PDF

Tumor Necrosis Factor (TNF)-α is a proinflammatory cytokine (PIC) and has been implicated in a variety of illness including cardiovascular disease. The current study investigated the inflammatory response trigged by TNFα in both cultured brain neurons and the hypothalamic paraventricular nucleus (PVN), a key cardiovascular relevant brain area, of the Sprague Dawley (SD) rats. Our results demonstrated that TNFα treatment induces a dose- and time-dependent increase in mRNA expression of PICs including Interleukin (IL)-1β and Interleukin-6 (IL6); chemokines including C-C Motif Chemokine Ligand 5 (CCL5) and C-C Motif Chemokine Ligand 12 (CCL12), inducible nitric oxide synthase (iNOS), as well as transcription factor NF-kB in cultured brain neurons from neonatal SD rats.

View Article and Find Full Text PDF

With data for distributions and diversities of macroinvertebrates from 12 main subtidal zones in the bays of Fujian on August 2010, we investigated species composition, biodiversity and community structure, as well as their relationships with environmental factors. The results showed that 382 macroinvertebrates were recorded, which included 170 annelids, 75 crustaceans, 78 mollusks, 19 echinodermata, and 40 other species. The species richness, individual abundance, biomass and biodiversity indices showed significantly spatial variability.

View Article and Find Full Text PDF

The time-interleaved analog-to-digital converter (TI-ADC) is a good option to realize high-speed data conversion for both single-carrier and multi-carrier optical communication systems. Offset mismatch is one of its drawbacks, which causes distortion in the sampled data and degrades the bit error rate (BER) performance of communication systems. In this article, a low-complexity online digital offset mismatch compensation (OMC) scheme based on time-domain averaging is proposed and implemented with a commercial off-the-shelf field programmable gate array (FPGA) chip for high-speed optical OFDM communications.

View Article and Find Full Text PDF

The rostral ventrolateral medulla (RVLM) plays a key role in mediating the development of stress-induced hypertension (SIH) by excitation and/or inhibition of sympathetic preganglionic neurons. The voltage-gated sodium channel Nav1.6 has been found to contribute to neuronal hyperexcitability.

View Article and Find Full Text PDF

Neuronal excitotoxicity is the major cause of alcohol-related brain damage, yet the underlying mechanism remains poorly understood. Using dopaminergic-like PC12 cells, we evaluated the effect of N-methyl-d-aspartate receptors (NMDAR) on acetate-induced changes in PC12 cells: cell death, cytosolic calcium, and expression levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Treatment of PC12 cells with increasing concentrations of acetate for 4 h caused a dose-dependent increase in the percentage of cells staining positive for cell death using propidium iodide (PI) exclusion and cytosolic reactive oxygen species (ROS) using cell ROX detection analyzed via flow cytometry.

View Article and Find Full Text PDF

Three benthic biotic indices, AZTI marine biotic index (AMBI), benthic opportunistic polychaetes amphipods (BOPA), and benthic polychaetes amphipods (BPA), combined with Shannon diversity index (H) were applied in ecological quality status (EQS) assessment, to investigate their suitability at four bays and an estuary in Fujian Province. The results showed that there were substantial differences in the performance of these indices. There were only four sites with the same assessment grades using different indices, accounting for 8.

View Article and Find Full Text PDF

Activation of the Ca/calmodulin-dependent protein kinase II isoform δA (CaMKIIδA) disturbs intracellular Ca homeostasis in cardiomyocytes during chronic heart failure (CHF). We hypothesized that upregulation of CaMKIIδA in cardiomyocytes might enhance Ca leak from the sarcoplasmic reticulum (SR) via activation of phosphorylated ryanodine receptor type 2 (P-RyR2) and decrease Ca uptake by inhibition of SR calcium ATPase 2a (SERCA2a). In this study, CHF was induced in rats by ligation of the left anterior descending coronary artery.

View Article and Find Full Text PDF

Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na , K , Ca , and Mg ) and anions; chloride, and acetate (Cl , OAc) from physiological samples.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a high salt diet affects proinflammatory cytokines (PICs) in the brain, specifically in the paraventricular nucleus (PVN), and its connection to hypertension in Dahl salt-sensitive rats.
  • Results show that a high salt diet raises levels of PICs like TNF-α, IL-6, and IL-1β in the PVN of Dahl S rats, contributing to neuronal activation and heightened blood pressure, while normal rats remain unaffected.
  • Further experiments demonstrate that infusing hypertonic saline directly into the brains of normal rats also boosts PIC expression, suggesting that increased sodium concentration in cerebrospinal fluid plays a role in the inflammatory response leading to hypertension.
View Article and Find Full Text PDF

Evidence indicates that high salt (HS) intake activates presympathetic paraventricular nucleus (PVN) neurons, which contributes to sympathoexcitation of salt-sensitive hypertension. The present study determined whether 5 weeks of HS (2% NaCl) intake alters the small conductance Ca-activated potassium channel (SK) current in presympathetic PVN neurons and whether this change affects the neuronal excitability. In whole-cell voltage-clamp recordings, HS-treated rats had significantly decreased SK currents compared to rats with normal salt (NS, 0.

View Article and Find Full Text PDF

The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling.

View Article and Find Full Text PDF

High salt (HS) intake sensitizes central autonomic circuitry leading to sympathoexcitation. However, its underlying mechanisms are not fully understood. We hypothesized that inhibition of PVN endoplasmic reticulum (ER) Ca store function would augment PVN neuronal excitability and sympathetic nerve activity (SNA).

View Article and Find Full Text PDF

Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na and Ca and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death.

View Article and Find Full Text PDF

In this review, we focus on the role of orexin signaling in blood pressure control and its potential link to hypertension by summarizing evidence from several experimental animal models of hypertension. Studies using the spontaneously hypertensive rat (SHR) animal model of human essential hypertension show that pharmacological blockade of orexin receptors reduces blood pressure in SHRs but not in Wistar-Kyoto rats. In addition, increased activity of the orexin system contributes to elevated blood pressure and sympathetic nerve activity (SNA) in dark-active period Schlager hypertensive (BPH/2J) mice, another genetic model of neurogenic hypertension.

View Article and Find Full Text PDF