Phys Chem Chem Phys
November 2024
A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon.
View Article and Find Full Text PDFThis study introduces an innovative neural network framework named spectral integrated neural networks (SINNs) to address both forward and inverse dynamic problems in three-dimensional space. In the SINNs, the spectral integration technique is utilized for temporal discretization, followed by the application of a fully connected neural network to solve the resulting partial differential equations in the spatial domain. Furthermore, the polynomial basis functions are employed to expand the unknown function, with the goal of improving the performance of SINNs in tackling inverse problems.
View Article and Find Full Text PDFGraphyne nanoscrolls (GNSs) have attracted significant research interest because of their wide-ranging applications. However, the production of GNSs via a self-scrolling approach is environment dependent. Here, molecular dynamics simulations are conducted to evaluate the self-scrolling behavior of an α-graphyne (α-GY) ribbon on a carbon nanotube (CNT) within various multiphysical environments, accounting for the interactions among temperature, electric field, and argon gas.
View Article and Find Full Text PDFThe finite element (FE) method is used to characterize the thermal gradient, solidification rate, and molten pool sizes of Ti-6Al-4V plates in the process of selective laser melting (SLM). The results are verified by using the computational fluid dynamics (CFD) simulation. The proposed FE model contains a series of toolpath information that is directly converted from a G-code file, including hatch spacing, laser power, layer thickness, dwell time, and scanning speed generated by using Slic3r software from a CAD file.
View Article and Find Full Text PDFNanotechnology
November 2022
Graphyne nanotube (GNT), as a promising one-dimensional carbon material, attracts extensive attention in recent years. However, the synthesis of GNT is still challenging even in the laboratory. This study reveals the feasibility of fabricating a GNT by self-assembling a monolayer graphyne (GY) ribbon on a carbon nanotube (CNT) via theoretical and numerical analysis.
View Article and Find Full Text PDFDetermining the quality of Ti-6Al-4V parts fabricated by selective laser melting (SLM) remains a challenge due to the high cost of SLM and the need for expertise in processes and materials. In order to understand the correspondence of the relative density of SLMed Ti-6Al-4V parts with process parameters, an optimized extreme gradient boosting (XGBoost) decision tree model was developed in the present paper using hyperparameter optimization with the GridsearchCV method. In particular, the effect of the size of the dataset for model training and testing on model prediction accuracy was examined.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2021
A method is proposed for designing tunable chiral nano-networks using partly hydrogenated graphene ribbons and carbon nanotubes (CNTs). In the network, the hydrogenated graphene ribbons (HGRs) act as basic components, which connect each other CNT joints. Each component contains two HGR segments and an internal graphene joint (G-J2) or CNT joint (CNT-J2).
View Article and Find Full Text PDFGraphene, as a typical two-dimensional material, is popular in the design of nanodevices. The interlayer relative sliding of graphene sheets can significantly affect the effective bending stiffness of the few-layered graphene. For restricting the relative sliding, we adopted the atomic shot peening method to bond the graphene sheets together by ballistic C60 fullerenes from its two surfaces.
View Article and Find Full Text PDFBy curving a rectangular diamondene, an sp /sp composite carbon film, a diamondene nanotube (DNT) can be formed when the two straight edges are sewn together. In this study, thermal stabilities of DNTs are investigated using molecular dynamics simulation approaches. An interesting thermal shrinkage of damaged DNTs is discovered.
View Article and Find Full Text PDFInt J Mol Sci
November 2018
By bending a straight carbon nanotube and bonding both ends of the nanotube, a nanoring (or nano-wheel) is produced. The nanoring system can be driven to rotate by fixed outer nanotubes at room temperature. When placing some atoms at the edge of each outer tube (the stator here) with inwardly radial deviation (IRD), the IRD atoms will repulse the nanoring in their thermally vibration-induced collision and drive the nanoring to rotate when the repulsion due to IRD and the friction with stators induce a non-zero moment about the axis of rotational symmetry of the ring.
View Article and Find Full Text PDFFor a resonator-based nano-balance, the capability of capturing a nanoparticle is essential for it to measure the mass of the particle. In the present study, a clamped-clamped nanobeam from a Boron-Nitride and Carbon (BNC) nanotube acts as the nano-balance, and a fullerene, e.g.
View Article and Find Full Text PDFTiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically.
View Article and Find Full Text PDFNanotechnology
January 2018
The rotation transmission system (RTS) made from co-axial multi-walled nanotubes (MWNTs) has the function of regulating the input rotation from a nanomotor. The mechanism for the regulation is that the friction among the tubes during rotation governs the rotation of the rotors in the nanosystem. By integrating a rotary nanomotor and a nanobearing into an MWNT-based RTS, it is discovered that the stator (outer tube) provides relatively greater friction on the rotors by penetrating the motor tube, which has a higher stable rotational frequency.
View Article and Find Full Text PDFA nanotube from single-layer black phosphorus (BP) has never been discovered in experiments. The present study proposed a method for the fabrication of a BP nanotube (BPNT) from a parallelogram nanoribbon self-assembled on a carbon nanotube (CNT). The nanoribbon has a pair of opposite sides along the third principal direction.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2018
Bone is a complex composite material with hierarchical structures and anisotropic mechanical properties. Bone also processes electromechanical properties, such as piezoelectricity and streaming potentials, which termed as stress generated potentials. Furthermore, the electrostrictive effect and flexoelectric effect can also affect electromechanical properties of the bone.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2017
A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon.
View Article and Find Full Text PDFIn a short nanobearing system made from carbon nanotubes, the rotor with high rotational frequency may escape from the stator, which may cause a stability problem to the system of a nanodevice with such a nanobearing. In the present work, nanobearings with tri-walled nanotubes are investigated to reveal the conditions for the moving away of the free inner tube from the high-speed rotating middle tube. Experimental results show that the escape happens when the radii difference between the two rotors is larger than 0.
View Article and Find Full Text PDFDue to weak interactions among phosphorus atoms in black phosphorene, a nanotube obtained by curling single-layer black phosphorus is not as stable as a carbon nanotube (CNT) at finite temperature. In the present work, we recommend a new 1D composite material with a double-walled nanotube (DWNT) from a black phosphorus nanotube (BPNT) and a CNT. The dynamic response of the composite DWNTs is simulated using a molecular dynamics approach.
View Article and Find Full Text PDFIn the fabrication of a thermally driven rotary nanomotor with the dimension of a few nanometers, fabrication and control precision may have great influence on rotor's stability of rotational frequency (SRF). To investigate effects of uncertainty of some major factors including temperature, tube length, axial distance between tubes, diameter of tubes and the inward radial deviation (IRD) of atoms in stators on the frequency's stability, theoretical analysis integrating with numerical experiments are carried out. From the results obtained via molecular dynamics simulation, some key points are illustrated for future fabrication of the thermal driven rotary nanomotor.
View Article and Find Full Text PDFA conceptual design is presented for a nanoengine governor based on the end interfacial effect of two rotary nanotubes. The governor contains a thermal-driven rotary nanomotor made from double-walled carbon nanotubes (DWCNTs) and a coaxially laid out rotary nanotube near one end of the nanomotor rotor. The rotation of the rotor in the nanomotor can be controlled by two features.
View Article and Find Full Text PDFGraphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson's ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs.
View Article and Find Full Text PDFSimilar to a carbon nanotube fabricated from a graphene sheet, a black phosphorus nanotube (BPNT) can also be theoretically produced by curling rectangular single-layer black phosphorus (SLBP). In the present study, the effect of the thermal vibration of atoms on the failure of a BPNT is investigated using molecular dynamics simulations. Two types of double-shell BPNTs obtained by curling the SLBP along its armchair/pucker and zigzag directions respectively are involved in simulation.
View Article and Find Full Text PDFJ Interferon Cytokine Res
December 2015
With both in vivo and in vitro experiments, the present study was conducted to investigate the effect of regulatory T cell (Treg) on promoting T-lymphocyte apoptosis and its regulatory mechanism through transforming growth factor-beta (TGF-β1) signaling in mice. A murine model of polymicrobial sepsis was reproduced by cecal ligation and puncture (CLP); PC61 and anti-TGF-β antibodies were used to decrease counts of CD4(+)CD25(+) Tregs and inhibit TGF-β activity, respectively. Splenic CD4(+)CD25(+) Tregs and CD4(+)CD25(-) T cells were isolated.
View Article and Find Full Text PDFA meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2015
It is important to determine the amplitude and variation characteristics of piezovoltage in wet bone, which can, in turn, be taken as a basis for studying whether electrical signals induced by external forces can affect the growth of bone cells. This work measured the characteristics of piezoelectric effects under dynamic and static loading. The results show that the variations of piezovoltage in wet bone in both loading and load holding periods follow a stretched exponential relaxation law, and the relaxation time constants of the piezovoltages are much larger than those of dry bone.
View Article and Find Full Text PDF