Publications by authors named "Qing-biao Xu"

Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle.

View Article and Find Full Text PDF

Background: Interest is increasing in the role of peptide-bound amino acids (AAs) in milk protein synthesis because studies have found that the uptake of some essential AAs by the mammary gland cannot meet the requirements for milk protein synthesis. Although the role of dipeptides in milk protein synthesis is clearly established, little is known about the underlying mechanisms.

Objective: The objective of this study was to determine whether small peptides can be taken up intact by the peptide transporters in mammary tissue explants and the underlying mechanisms of the effects of methionyl-methionine (Met-Met) supplementation on milk protein synthesis.

View Article and Find Full Text PDF

In cattle, dietary protein is gradually degraded into peptide-bound amino acids (PBAAs), free amino acids (FAAs), and ultimately into ammonia by the rumen microbes. Both PBAA and FAA are milk protein precursors, and the rumen and small intestines are the main sites where such precursors are produced and absorbed. This work was designed to investigate the expression of the peptide transporter PepT1 and the AA transporters ASCT2, y(+)LAT1, and ATB(0,+), and the concentrations of PBAA, FAA, and soluble protein in the rumen, omasum, and duodenum of dairy cows.

View Article and Find Full Text PDF

The woodland and farmland soil nearby lead-zinc mine has been polluted seriously due to the mining. Bamboo forest of Phyllostachys edulis has high economic value and is distributed widely in China. The Phyllostachys edulis forest nearby lead-zinc mine was selected, and the distribution characteristics of main heavy metal Cu, Zn, Pb and Cd in soil were studied.

View Article and Find Full Text PDF