Lycopene is an important pigment with an alkene skeleton from , which is also obtained from some red fruits and vegetables. Lycopene is used in the food field with rich functions and serves in the medical field with multiple clinical values because it has dual functions of both medicine and food. It was found that lycopene was mainly isolated by solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction, high-intensity pulsed electric field-assisted extraction, enzymatic-assisted extraction, and microwave-assisted extraction.
View Article and Find Full Text PDFMetabolic uncoupling technology was one of the methods widely used to on-site control the production of excess sludge in wastewater treatment processes. However, the uncoupler effects on soluble microbial products (SMP), microbial activity, and environment impact have few been reported. This study showed that sludge yield was reduced by 33.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Anchoring nanoscale building blocks, regardless of their shape, into specific arrangements on surfaces presents a significant challenge for the fabrication of next-generation chip-based nanophotonic devices. Current methods to prepare nanocrystal arrays lack the precision, generalizability, and postsynthetic robustness required for the fabrication of device-quality, nanocrystal-based metamaterials [Q. Y.
View Article and Find Full Text PDFTemplate-based strategies are becoming increasingly important for controlling the position of nanoparticle-based (NP-based) structures on surfaces for a wide variety of encoding and device fabrication strategies. Thus, there is an increasing need to understand the behavior of NPs in confined spaces. Herein, a systematic investigation of the diffusion and adsorption properties of DNA-modified NPs is presented in lithographically defined, high-aspect-ratio pores using a template-confined, DNA-mediated assembly.
View Article and Find Full Text PDFMultiplexed surface encoding is achieved by positioning two different sizes of gold nanocubes on gold surfaces with precisely defined locations for each particle via template-confined, DNA-mediated nanoparticle assembly. As a proof-of-concept demonstration, cubes with 86 and 63 nm edge lengths are assembled into arrangements that physically and spectrally encrypt two sets of patterns in the same location. These patterns can be decrypted by mapping the absorption intensity of the substrate at λ = 773 and 687 nm, respectively.
View Article and Find Full Text PDFDNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing "locked" nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials.
View Article and Find Full Text PDFA high-throughput, solution-based, scanning-probe photochemical nanopatterning approach, which does not require the use of probes with subwavelength apertures, is reported. Specifically, pyramid arrays made from high-refractive-index polymeric materials were constructed and studied as patterning tools in a conventional liquid-phase beam pen lithography experiment. Two versions of the arrays were explored with either metal-coated or metal-free tips.
View Article and Find Full Text PDFDNA surface ligands can be used as programmable "bonds" to control the arrangement of nanoparticles into crystalline superlattices. Here, we study the intrinsic responsiveness of these DNA bonds to changes in local dielectric constant (εr) as a new approach to dynamically modulate superlattice structure. Remarkably, ethanol (EtOH) addition can be used to controllably tune DNA bond length from 16 to 3 nm and to increase bond stability by >40 °C, while retaining long-range order and crystal habit.
View Article and Find Full Text PDFMultimetallic nanoparticles are useful in many fields, yet there are no effective strategies for synthesizing libraries of such structures, in which architectures can be explored in a systematic and site-specific manner. The absence of these capabilities precludes the possibility of comprehensively exploring such systems. We present systematic studies of individual polyelemental particle systems, in which composition and size can be independently controlled and structure formation (alloy versus phase-separated state) can be understood.
View Article and Find Full Text PDFThe vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures.
View Article and Find Full Text PDFAlloy nanoparticles are important in many fields, including catalysis, plasmonics, and electronics, due to the chemical and physical properties that arise from the interactions between their components. Typically, alloy nanoparticles are made by solution-based synthesis; however, scanning-probe-based methods offer the ability to make and position such structures on surfaces with nanometer-scale resolution. In particular, scanning probe block copolymer lithography (SPBCL), which combines elements of block copolymer lithography with scanning probe techniques, allows one to synthesize nanoparticles with control over particle diameter in the 2-50 nm range.
View Article and Find Full Text PDFControl of both photonic and plasmonic coupling in a single optical device represents a challenge due to the distinct length scales that must be manipulated. Here, we show that optical metasurfaces with such control can be constructed using an approach that combines top-down and bottom-up processes, wherein gold nanocubes are assembled into ordered arrays via DNA hybridization events onto a gold film decorated with DNA-binding regions defined using electron beam lithography. This approach enables one to systematically tune three critical architectural parameters: (1) anisotropic metal nanoparticle shape and size, (2) the distance between nanoparticles and a metal surface, and (3) the symmetry and spacing of particles.
View Article and Find Full Text PDFA novel, apertureless, cantilever-free pen array can be used for dual scanning photochemical and molecular printing. Serial writing with light is enabled by combining self-focusing pyramidal pens with an opaque backing between pens. The elastomeric pens also afford force-tuned illumination and simultaneous delivery of materials and optical energy.
View Article and Find Full Text PDFLayer-by-layer assembly of graphene has been proven to be an effective way to improve its mechanical properties, but its fracture mechanism, which is crucial for practical device applications, is still not clear and has not been fully studied yet. By consecutive stacking of two graphene monolayers, we fabricate two-layer stacked graphene membranes with a clean interface between the two layers. Fracture behavior of the two-layer stacked graphene membranes is studied using nanoindentation performed by atomic force microscopy.
View Article and Find Full Text PDFThe mechanical properties of ultrathin membranes have attracted considerable attention recently. Nanoindentation based on atomic force microscopy is commonly employed to study mechanical properties. We find that the data processing procedures in previous studies are nice approximations, but it is difficult for them to illustrate the mechanical properties precisely.
View Article and Find Full Text PDFObjective: To compare the effects of cilostazol on cerebral arteries and cerebrovascular blood flow in secondary prevention of ischemic stroke, with those of aspirin.
Methods: Sixty-eight patients who had ischemic stroke during the recent 1-6 months were recruited and randomized into cilostazol or aspirin group. Cerebrovascular condition was assessed by magnetic resonance angiography (MRA) and transcranial doppler ultrasonography (TCD) at the beginning of the study and after 12-month medication.