Publications by authors named "Qing-Yi Hao"

Synchronization is a ubiquitous phenomenon in engineering and natural ecosystems. While the dynamics of synchronization modeled by the Kuramoto model are commonly studied in two dimensions and the state of dynamic units is characterized by a scalar angle variable, we studied the Kuramoto model generalized to D dimensions in the framework of a complex network and utilized the local synchronous order parameter between the agent and its neighbors as the controllable variable to adjust the coupling strength. Here, we reported that average connectivity of networks affects the time-dependent, rhythmic, cyclic state.

View Article and Find Full Text PDF

The two-lane driven system is a type of important model to research some transport systems, and also a powerful tool to investigate properties of nonequilibrium state systems. This paper presents a driven bidirectional two-lane model. The dynamic characteristics of the model with periodic boundary are investigated by Monte Carlo simulation, simple mean field, and cluster mean field methods, respectively.

View Article and Find Full Text PDF

Driven diffusive systems are important models in nonequilibrium state statistical mechanics. This paper studies an asymmetric exclusion process model with nearest rear neighbor interactions associated with energy. The exact flux expression of the model is obtained by a cluster mean-field method.

View Article and Find Full Text PDF

Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understanding the effect of spatial correlation on the dynamics of the system.

View Article and Find Full Text PDF

This paper has studied spontaneous symmetry breaking (SSB) phenomenon in two types of two-channel asymmetric simple exclusion processes (ASEPs). One common feature of the two systems is that interactions for each species of particle happen at only one site, and the system reduces to two independent ASEPs when interaction vanishes. It is shown that with the weakening of interaction, the SSB is suppressed.

View Article and Find Full Text PDF

This paper studies unidirectional pedestrian flow by using a lattice gas model with parallel update rules. Game theory is introduced to deal with conflicts that two or three pedestrians want to move into the same site. Pedestrians are either cooperators or defectors.

View Article and Find Full Text PDF

This paper studies unidirectional pedestrian flow in a channel using the lattice gas model with parallel update rule. The conflict (i.e.

View Article and Find Full Text PDF

This paper studies an extended parallel asymmetric exclusion process, in which the anticipation effect is taken into account. The fundamental diagram of the model has been investigated via cluster mean field analysis. Different from previous mean field analysis, in which the n -cluster probabilities P(σ{i},…,σ{i+n-1}) involve the (n+2) -cluster probabilities P(τ{i-1},…,τ{i+n}) , our mean-field analysis is asymmetric because the three-cluster probabilities P(σ{i},σ{i+1},σ{i+2}) involve the six-cluster probabilities P(τ{i-1},…,τ{i+4}) .

View Article and Find Full Text PDF