Publications by authors named "Qing-Qing Dou"

Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources.

View Article and Find Full Text PDF

Background: Breast cancer brain metastasis (BCBM) is an advanced breast disease that is difficult to treat and is associated with a high risk of death. Patient prognosis is usually poor, with reduced quality of life. In this context, we report the case of a patient with HER-2-positive BCBM treated with a macromolecular mAb (inetetamab) combined with a small molecule tyrosine kinase inhibitor (TKI).

View Article and Find Full Text PDF

A lignin-based copolymer with good biocompability was successfully prepared via atom transfer radical polymerization (ATRP) for efficient gene delivery. Kraft lignin was modified into lignin-based macroinitiators and then poly(glycidyl methacrylate)-co-poly(ethylene glycol)methacrylate (PGMA-PEGMA) side chains were prepared via ATRP grafting onto lignin. Ethanolamine was sequentially functionalized onto lignin-PGMA-PEGMA and a cationic lignin-PGEA-PEGMA copolymer consisting of a lignin core and different-length PGEA-PEGMA side chains was produced.

View Article and Find Full Text PDF

Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT).

View Article and Find Full Text PDF

A drug model photosensitizer-conjugated upconversion nanoparticles nanocomplex was explored for application in near-infrared photodynamic therapy. As near-infrared penetrates deeper into the tissue, the model is useful for the application of photodynamic therapy in deeper tissue. The nanocomplex that was synthesized had low polydispersity, and the upconversion nanoparticle was covalently conjugated with the photosensitizer.

View Article and Find Full Text PDF

Upconversion nanoparticles (UCNs) attract intensive attentions in biomedical applications. They have shown great potential in bioimaging, biomolecule detection, drug delivery, photodynamic therapy and cellular molecules interactions. Due to the anti-Stokes optical property and NIR excitation, UCNs overcome the drawbacks encountered in conventional luminescent biomarkers.

View Article and Find Full Text PDF

As society ages, aging medical problems such as organ damage or failure among senior citizens increases, raising the demand for organ repair technologies. Synthetic materials have been developed and applied in various parts of human body to meet the biomedical needs. Hydrogels, in particular, have found extensive applications as wound healing, drug delivery and controlled release, and scaffold materials in the human body.

View Article and Find Full Text PDF