Publications by authors named "Qing-Qi Chen"

Surface-enhanced Raman spectroscopy (SERS) is a promising ultrasensitive analysis technology due to outstanding molecular fingerprint identification. However, the measured molecules generally need to be adsorbed on a SERS substrate, which makes it difficult to detect weakly adsorbed molecules, for example, the volatile organic compound (VOC) molecules. Herein, we developed a kind of a SERS detection method for weak adsorption molecules with Au@ZIF-8 core-shell nanoparticles (NPs).

View Article and Find Full Text PDF

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity.

View Article and Find Full Text PDF

PtNi alloy catalysts have excellent catalytic activity and are considered some of the most promising electrocatalysts capable of replacing pure Pt for the oxygen reduction reaction (ORR). For PtNi alloys, Ni-doping can improve performance by changing the electronic and structural properties of the catalyst surface and its interaction with reaction intermediates. However, to date there is no direct spectral evidence detecting or identifying the effect of Ni on the ORR in PtNi alloy catalysts.

View Article and Find Full Text PDF

Metallic nanoclusters (NCs) have molecular-like structures and unique physical and chemical properties, making them an interesting new class of luminescent nanomaterials with various applications in chemical sensing, bioimaging, optoelectronics, light-emitting diodes (LEDs), etc. However, weak photoluminescence (PL) limits the practical applications of NCs. Herein, an effective and facile strategy of enhancing the PL of NCs was developed using Ag shell-isolated nanoparticle (Ag SHIN)-enhanced luminescence platforms with tuned SHINs shell thicknesses.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive label-free analytical technique that can provide unique chemical and structural fingerprint information. However, gaining reliable quantitative analysis with SERS remains a huge challenge because of poor reproducibility and the instability of nanostructured SERS active surfaces. Herein, an effective strategy of coating Au nanoparticles (NPs) with ultrathin and uniform Prussian blue (PB) shell (Au@PB NPs) was developed for quantitative detection of dopamine (DA) concentrations in blood serum and crystal violet (CV) contaminants in lake water.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) is a common cause of morbidity and mortality worldwide. Two pathogenic pathways are involved in the development of adenoma to CRC. The first pathway involves characterized by chromosomal instability resulting in the accumulation of mutations.

View Article and Find Full Text PDF