Publications by authors named "Qing-Hu Ma"

Lignin is complex, three-dimensional biopolymer existing in plant cell wall. Lignin biosynthesis is increasingly highlighted because it is closely related to the wide applications in agriculture and industry productions, including in pulping process, forage digestibility, bio-fuel, and carbon sequestration. The functions of lignin have also attracted more attentions recently, particularly in plant defense response against different pathogens.

View Article and Find Full Text PDF

The photosynthetic mechanism of crop yields in fluctuating light environments in the field remains controversial. To further elucidate this mechanism, we conducted field and simulation experiments using maize (Zea mays) plants. Increased planting density enhanced the light fluctuation frequency and reduced the duration of daily high light, as well as the light-saturated photosynthetic rate, biomass, and yield per plant.

View Article and Find Full Text PDF

46 monocot chimeric jacalins (MCJs) were mined from wheat genome. They were divided into three subfamilies with the activity of mannose-specific lectins and had effects on dehydration tolerance or disease resistance. Monocot chimeric jacalin (MCJ) is a newly identified subfamily of plant lectins that exclusively exists in Poaceae.

View Article and Find Full Text PDF

Plants in their natural environment are often exposed to fluctuating light because of self-shading and cloud movements. As changing frequency is a key characteristic of fluctuating light, we speculated that rapid light fluctuation may induce rapid photosynthetic responses, which may protect leaves against photoinhibition. To test this hypothesis, maize seedlings were grown under fluctuating light with various frequencies (1, 10, and 100 cycles of fluctuations/10 h), and changes in growth, chlorophyll content, gas exchange, chlorophyll a fluorescence, and P700 were analyzed carefully.

View Article and Find Full Text PDF

ROP is a subfamily of small GTP-binding proteins that uniquely exist in plants. It acts as versatile molecular switches that regulate various developmental processes. Some ROP proteins are also reported to affect defense responses, although their exact mechanism is not fully understood.

View Article and Find Full Text PDF

SKP1 is a core component of SCF complex, a major type of E3 ubiquitin ligase catalyzing the last step in ubiquitin-mediated protein degradation pathway. In present study, SKP1 gene family in Solanum pimpinellifolium (SSK), a wild species of tomato, was investigated. A total of 19 SSK genes were identified through homologous search.

View Article and Find Full Text PDF

TaCCoAOMT1 is located in wheat chromosome 7A and highly expressed in stem and root. It is important for lignin biosynthesis, and associated with stem maturity but not lodging resistance. Caffeoyl coenzyme A 3-O-methyltransferases (CCoAOMTs) are one important class of enzymes to carry out the transfer of the methyl group from S-adenosylmethionine to the hydroxyl group, and play important roles in lignin and flavonoids biosynthesis.

View Article and Find Full Text PDF

Monocot chimeric jacalins are a small group of lectins (currently with nine members), each typically consisting of a dirigent domain and a jacalin-related lectin domain. This unique module structure, along with their limited taxonomic distribution and short time window in molecular evolution, makes them a novel family of lectins. Recent studies have shown that these proteins play important roles in plant stress responses and development.

View Article and Find Full Text PDF

Ta-JA1 is a jacalin-like lectin from wheat (Triticum aestivum) plants. To date, its homologs are only observed in the Gramineae family. Our previous experiments have demonstrated that Ta-JA1 contains a modular structure consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin domain (JRL) and this protein exhibits a mannose-specific lectin activity.

View Article and Find Full Text PDF

The subgroup 4 of R2R3-MYB transcription factors has been proposed as repressors regulating the phenylpropanoid pathway. Here, we report a cDNA encoding a subgroup 4 R2R3-MYB factor from wheat, designated as TaMYB4. A phylogenetic analysis showed that TaMYB4 is in a subclade that is specific to monocot plants.

View Article and Find Full Text PDF

Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignols. In the present study, a cDNA encoding a CAD was isolated from wheat, designated as TaCAD1. A genome-wide data mining in the wheat EST database revealed another 10 CAD-like homologues, namely TaCAD2 to TaCAD11.

View Article and Find Full Text PDF

Jasmonates are known to induce the transcriptional activation of plant defense genes, which leads to the production of jasmonate-regulated proteins (JRP). We previously cloned and characterized a novel jacalin-like lectin gene (Ta-JA1) from wheat (Triticum aestivum L.), which codes a modular JRP with disease response and jacalin-related lectin (JRL) domains and is present only in the Gramineae family.

View Article and Find Full Text PDF

A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T(2) progeny had become homozygous for the transgene.

View Article and Find Full Text PDF

Stem lodging-resistance is an important phenotype in crop production. In the present study, the expression of the wheat COMT gene (TaCM) was determined in basal second internodes of lodging-resistant (H4564) and lodging-susceptible (C6001) cultivars at stem elongation, heading, and milky endosperm corresponding to Zadoks stages Z37, Z60, and Z75, respectively. The TaCM protein levels were analysed by protein gel blot and COMT enzyme activity was determined during the same stem developmental stages.

View Article and Find Full Text PDF

Cytokinins are master regulators of plant growth and development. They are involved in the regulation of many important physiological and metabolic processes. Recent progress in cytokinin research at the molecular level, including identification of related genes and cytokinin receptors, plus elucidation of signal transduction, has greatly increased our understanding of cytokinin actions.

View Article and Find Full Text PDF

Caffeic acid 3-O-methyltransferase (COMT) catalyzes the multi-step methylation reactions of hydroxylated monomeric lignin precursors, and is believed to occupy a pivotal position in the lignin biosynthetic pathway. A cDNA (TaCM) was identified from wheat and it was found to be expressed constitutively in stem, leaf and root tissues. The deduced amino acid sequence of TaCM showed a high degree of identity with COMT from other plants, particularly in SAM binding motif and the residues responsible for catalytic and substrate specificity.

View Article and Find Full Text PDF

The 14-3-3 proteins, originally described as the mammalian brain proteins, are ubiquitous eukaryotic proteins and have been shown to exert an array of function. A great number of 14-3-3 sequences have been reported in Eudicotyledon. The data of 14-3-3 from the monocotyledon plants, however, are limited.

View Article and Find Full Text PDF

Cinnamoyl-CoA reductase (CCR) is responsible for the CoA ester to aldehyde conversion in monolignol biosynthesis, which diverts phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understanding of lignin biosynthesis and its biological function, a cDNA encoding CCR was identified from wheat (Triticum aestivum L.), and designated as Ta-CCR1.

View Article and Find Full Text PDF

Ran, which functions in nucleocytoplasmic transport and mitosis, binds to and is regulated in part by Ran binding protein (RanBP). A RanBP cDNA (TaRanBP1) was isolated from a wheat cDNA library using RT-PCR product as a probe. The predicted amino acid sequence of TaRanBP1 is over 60% identity to AtRanBP1 from Arabidopsis and also with considerable similarity to human and fungi RanBPs.

View Article and Find Full Text PDF

Cinnamoyl-CoA reductase (CCR) is responsible for the CoA ester-->aldehyde conversion in monolignol biosynthesis, which can divert phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understanding of lignin biosynthesis in wheat (Triticum aestivum L.), a cDNA encoding CCR was isolated and named Ta-CCR2.

View Article and Find Full Text PDF

Jasmonates are distributed throughout higher plants, where they play an important role in the activation of signal transduction pathways in response to wounding and pathogen attack. Jasmonates are known to induce the transcriptional activation of plant defense genes, produce jasmonate-regulated proteins (JRP). One class of 32 kDa JRP (designated as JRP-32 in this paper) is present in the Gramineae family, although the function of these proteins is still unclear.

View Article and Find Full Text PDF

Malate dehydrogenase (MDH), which is ubiquitous in nature, catalyzes the interconversion of oxaloacetate and malate. Higher plants contain multiple forms of MDH that differ in co-enzyme specificity, subcellular localization and physiological function. Cytosolic NAD-dependent MDH (cyMDH) is one class of MDH that has not been extensively characterized in plants.

View Article and Find Full Text PDF

A Medicago truncatula zinc finger protein cDNA (Mt-ZFP1) was isolated from a M.truncatula seedling cDNA library using RT-PCR product as a probe. The predicted amino acid sequence of Mt-ZFP1 is over 79% similar to S-SCOF-1 from soybean, a novel cold-inducible zinc finger protein involved in cold stress signal transduction mediated by abscisic acid (ABA).

View Article and Find Full Text PDF

A wheat ethylene receptor homologue (W-er1) was isolated from a wheat stem cDNA library using the Arabidopsis ETR1 cDNA as a probe. The predicted amino acid sequence of W-er1 is over 70% similar to ERS1 from Arabidopsis and exhibits homology to bacterial two-component response regulators within the histidine kinase domain. Northern hybridization demonstrated that W-er1 was expressed in stem, leaf and root tissues.

View Article and Find Full Text PDF

In the present study two cDNA fragments were cloned by nested-PCR using degenerate primers for COMT and found to be 93% identical at the nucleotide level. The deduced amino acid sequence of the two cDNAs showed a high degree of identity with COMT from other plants and were most similar to COMTs from monocots. RNA gel blot hybridization demonstrated that the wheat COMT gene W-cm5-1 was expressed in stem, root and leaf tissues.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1396h6otucrqd8a7fo80ec6pcjfmeq2p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once