Laser cooling atoms and molecules to ultralow temperatures has produced plenty of opportunities in fundamental physics, precision metrology, and quantum science. Although theoretically proposed over 40 years, the laser cooling of certain lattice vibrations (i.e.
View Article and Find Full Text PDFFerromagnetic/antiferromagnetic materials are of crucial importance in information storage and spintronics devices. Herein we present a comprehensive study of 2D Heisenberg-like antiferromagnetic material MnPS by optical contrast and Raman spectroscopy. We propose a criterion of 0.
View Article and Find Full Text PDFPhonon-assisted anti-Stokes photoluminescence (ASPL) up-conversion lies at the heart of optical refrigeration in solids. The thermal energy contained in the lattice vibrations is taken away by the emitted anti-Stokes photons' ASPL process, resulting in laser cooling of solids. To date, net laser cooling of solids is limited in rare-earth (RE)-doped crystals, glasses, and direct band gap semiconductors.
View Article and Find Full Text PDFThe material choice, layer thickness, and twist angle widely enrich the family of van der Waals heterostructures (vdWHs), providing multiple degrees of freedom to engineer their optical and electronic properties. The moiré patterns in vdWHs create a periodic potential for electrons and excitons to yield many interesting phenomena, such as Hofstadter butterfly spectrum and moiré excitons. Here, in the as-grown/transferred twisted bilayer MoS (tBLMs), one of the simplest prototypes of vdWHs, we show that the periodic potentials of moiré patterns also modify the properties of phonons of its monolayer MoS constituent to generate Raman modes related to moiré phonons.
View Article and Find Full Text PDFEver since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties.
View Article and Find Full Text PDFTwo-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs.
View Article and Find Full Text PDFTransition-metal dichalcogenide (TMD) semiconductors have been widely studied due to their distinctive electronic and optical properties. The property of TMD flakes is a function of their thickness, or layer number (N). How to determine the N of ultrathin TMD materials is of primary importance for fundamental study and practical applications.
View Article and Find Full Text PDFAn SiO2/Si substrate has been widely used to support two-dimensional (2d) flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The Raman intensity of the vibration modes of 2d flakes is used to identify the layer number of 2d flakes on the SiO2/Si substrate, however, such an intensity is usually dependent on the flake quality, crystal orientation and laser polarization. Here, we used graphene flakes, a prototype system, to demonstrate how to use the intensity ratio between the Si peak from SiO2/Si substrates underneath graphene flakes and that from bare SiO2/Si substrates for the layer-number identification of graphene flakes up to 100 layers.
View Article and Find Full Text PDF