Annual gross primary productivity (AGPP) is the basis for grain production and terrestrial carbon sequestration. Mapping regional AGPP from site measurements provides methodological support for analysing AGPP spatiotemporal variations thereby ensures regional food security and mitigates climate change. Based on 641 site-year eddy covariance measuring AGPP from China, we built an AGPP mapping scheme based on its formation and selected the optimal mapping way, which was conducted through analysing the predicting performances of divergent mapping tools, variable combinations, and mapping approaches in predicting observed AGPP variations.
View Article and Find Full Text PDF[This corrects the article on p. 2394 in vol. 27, PMID: 34040330.
View Article and Find Full Text PDFBackground: Gut microbiota dysbiosis is reportedly actively involved in autoimmune diseases such as type 1 diabetes mellitus (T1DM). However, the alterations in the gut microbiota and their correlation with fasting blood glucose (FBG) in Chinese children with T1DM remain unclear.
Aim: To investigate alterations in the gut microbiota in Chinese children with T1DM and their associations with clinical indicators.
In order to predict the effects of climate change on the global carbon cycle, it is crucial to understand the environmental factors that affect soil carbon storage in grasslands. In the present study, we attempted to explain the relationships between the distribution of soil carbon storage with climate, soil types, soil properties and topographical factors across different types of grasslands with different grazing regimes. We measured soil organic carbon in 92 locations at different soil depth increments, from 0 to 100 cm in southwestern China.
View Article and Find Full Text PDFCanopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature.
View Article and Find Full Text PDFWe calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
December 2010
By using eddy covariance technique, this paper quantitatively analyzed the photosynthetic characteristics of tropical seasonal rainforest ecosystem and related environmental controlling factors in Xishuangbanna in 2003-2006. In the study period, less interannual difference was observed in the net photosynthesis of the ecosystem, with the maximum photosynthesis rate (P(eco,opt)), respiration at daytime (R(eco,d)), and apparent quantum yield (alpha) averaged by 0.813 mg x m(-2) x s(-1), 0.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
April 2008
By the methods of chamber-based and eddy covariance measurements, the CO2 exchange of dominant tree species Pometia tomentosa and Gironniera subaequalis at leaf and canopy levels in the tropical seasonal rain forest of Xishuangbanna was measured in different seasons of 2004. The results showed that for the two tree species, the maximum net photosynthesis (P(max A)) of canopy based on chamber-based measurement ranked in the order of rainy season (RS) > end of rainy season (ERS) > foggy-cool season (FS) > dry-hot season (DS), and the dark respiration rate (Rd) of leaf was RS > ERS > DS > FS. The P(max B) based on eddy covariance measurement was in the same order as that based on chamber-based measurement, while the canopy respiration rate (Re) was RS > DS > FS > ERS.
View Article and Find Full Text PDF