Publications by authors named "Qing-Bin Yuan"

The aim of this randomized, double-blind, controlled trial was to examine the effects of infant formula on the growth, stool consistency, and bone strength of infants ( = 120) over a period of 4 months. The investigational group was fed an A2 β-casein cow's milk infant formula containing casein phosphopeptides (CPP) and high sn-2 palmitate (54% of total palmitate at sn-2). The control group was fed a standard cow's milk formula without CPP and with low sn-2 palmitate (29% of total palmitate at sn-2).

View Article and Find Full Text PDF

Due to the limitations of current extraction methods, extracellular DNA (eDNA) is rarely discerned from intracellular DNA (iDNA) despite having unique contributions to antibiotic resistance genes (ARGs) propagation. Furthermore, eDNA may be free (f-eDNA) or adsorbed to or suspended solids, including cells (a-eDNA), which affects ARG persistence and transmissivity. We developed a novel method using magnetic beads to separate iDNA, a-eDNA, and f-eDNA to assess how these physical states of ARGs change across a wastewater treatment plant.

View Article and Find Full Text PDF

This study explores the prevalence, emission, and reduction of five ARGs (sulI, tetA, mphB, qnrD, and mcr-1) and integron (intI) through a distributed swine wastewater purification facility and the effluent-receiving environment. Typical metal resistance genes (MRGs), pathogenic bacterial indicators, the bacterial community, and wastewater properties were also explored to determine their effects on the fates of ARGs. Results indicated that the purification process could hardly effectively remove ARGs' prevalence.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the prevalence of super antibiotic resistance genes (SARGs), specifically MCR-1 and NDM-1, in the Yangtze River and surrounding wastewater and drinking water treatment facilities, revealing that these genes are more common and resilient than previously recognized.
  • - Despite the effective removal of the bacteria hosting MCR-1 and NDM-1 in wastewater treatment plants (WWTP), significant quantities of these genes still persist in the treated water and even in drinking water sources, raising concerns about human health risks.
  • - Molecular analysis shows complex relationships between SARGs and bacterial communities, indicating that wastewater treatment processes are inadequate in fully eliminating these resistance genes, which emphasizes the need for improved treatment methods to
View Article and Find Full Text PDF

The livestock wastewater treatment plant represents an important reservoir of antibiotic resistance determinants in the environment. The study explored the prevalence of five antibiotic resistance genes (ARGs, including sulI, tetA, qnrD, mphB and mcr-1) and class 1 integron (intI1) in a typical livestock wastewater treatment plant, and analyzed their integrated association with two metal resistance genes (copA and czcA), two pathogens genes (Staphylococcus and Campylobacter), bacterial community and wastewater properties. Results indicated that all investigated genes were detected in the plant.

View Article and Find Full Text PDF

Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors.

View Article and Find Full Text PDF

Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study.

View Article and Find Full Text PDF

Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities; however, the disinfection processes, as microbial control technologies, have not been evaluated for their impacts on ARGs transfer. In this study, the effects of ultraviolet (UV) disinfection and chlorination on the frequency of ARGs transfer have been explored based on the conjugative transfer model between Gram-negative strains of E. coli.

View Article and Find Full Text PDF

This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L). The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L).

View Article and Find Full Text PDF

Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year.

View Article and Find Full Text PDF

Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem.

View Article and Find Full Text PDF

Little is known about the microbial selectivity of UV treatment for antibiotic resistant bacteria, and the results of limited studies are conflicting. To understand the effect of UV disinfection on antibiotic resistant bacteria, both total heterotrophic bacteria and antibiotic resistant bacteria (including cephalexin-, ciprofloxacin-, erythromycin-, gentamicin-, vancomycin-, sulfadiazine-, rifampicin-, tetracycline- and chloramphenicol-resistant bacteria) were examined in secondary effluent samples from a municipal wastewater treatment plant. Bacteria resistant to both erythromycin and tetracycline were chosen as the representative of multiple-antibiotic-resistant bacteria and their characteristics after UV treatment were also investigated.

View Article and Find Full Text PDF