Publications by authors named "Qing C Meng"

Background: Increasing numbers of studies have elucidated the role of competitive endogenous RNA (ceRNA) networks in carcinogenesis. However, the potential role of the paclitaxel-related ceRNA network in the innate mechanism and prognosis of pancreatic cancer has not been identified.

Methods: Comprehensive bioinformatics analyses were performed to identify drug-related miRNAs (DRmiRNAs), drug-related mRNAs (DRmRNAs) and drug-related lncRNAs (DRlncRNAs) and construct a ceRNA network.

View Article and Find Full Text PDF

Previous studies have demonstrated that the brain has an intrinsic resistance to changes in arousal state. This resistance is most easily measured at the population level in the setting of general anesthesia and has been termed neural inertia. To date, no study has attempted to determine neural inertia in individuals.

View Article and Find Full Text PDF

Delayed emergence from anesthesia was previously reported in a case study of a child with Glycine Encephalopathy. To investigate the neural basis of this delayed emergence, we developed a zebrafish glial glycine transporter (glyt1 - / -) mutant model. We compared locomotor behaviors; dose-response curves for tricaine, ketamine, and 2,6-diisopropylphenol (propofol); time to emergence from these anesthetics; and time to emergence from propofol after craniotomy in glyt1-/- mutants and their siblings.

View Article and Find Full Text PDF

The field of neuropharmacology has not yet achieved a full understanding of how the brain transitions between states of consciousness and drug-induced unconsciousness, or anesthesia. Many small molecules are used to alter human consciousness, but the repertoire of underlying molecular targets, and thereby the genes, are incompletely understood. Here we describe a robust larval zebrafish model of anesthetic action, from sedation to general anesthesia.

View Article and Find Full Text PDF

Clinical studies have demonstrated sex-related differences in recovery from surgical anesthesia. This study aimed to characterize the emergence pattern following two anesthesia regimens in both sexes of rats. We considered six different markers of emergence from anesthesia: sigh, eye blinking, forelimb movement, mastication, neck extension, and recovery of the righting reflex (RORR).

View Article and Find Full Text PDF

Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection.

View Article and Find Full Text PDF

Mechanisms through which anesthetics disrupt neuronal activity are incompletely understood. In order to study anesthetic mechanisms in the intact brain, tight control over anesthetic pharmacology in a genetically and neurophysiologically accessible animal model is essential. Here, we developed a pharmacokinetic model that quantitatively describes propofol distribution into and elimination out of the brain.

View Article and Find Full Text PDF

Background: Shared neurophysiologic features between sleep and anesthetic-induced hypnosis indicate a potential overlap in neuronal circuitry underlying both states. Previous studies in rodents indicate that preexisting sleep debt discharges under propofol anesthesia. The authors explored the hypothesis that propofol anesthesia also dispels sleep pressure in the fruit fly.

View Article and Find Full Text PDF

The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism.

View Article and Find Full Text PDF

Background: Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep.

View Article and Find Full Text PDF

A monomeric four-α-helix bundle protein Aα₄ was designed as a step towards investigating the interaction of volatile general anesthetics with their putative membrane protein targets. The alpha helices, connected by glycine loops, have the sequence A, B, B', A'. The DNA sequence was designed to make the helices with the same amino acid sequences (helix A and A', B and B', respectively) as different as possible, while using codons which are favorable for expression in E.

View Article and Find Full Text PDF

Barbiturates potentiate GABA actions at the GABA(A) receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency.

View Article and Find Full Text PDF

Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures.

View Article and Find Full Text PDF

One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS).

View Article and Find Full Text PDF

Background: Cyanide toxicity is a complication of sodium nitroprusside administration. Cardiac surgery may increase the risk of cyanide toxicity, because hemolysis during cardiopulmonary bypass (CPB) may catalyze the release of free cyanide from sodium nitroprusside.

Methods: We obtained serial blood specimens from 25 cardiac surgical patients during CPB.

View Article and Find Full Text PDF

Competitive protein adsorption plays a key role in the surface hemocompatibility of biological implants. We describe a quantitative chromatography method to measure the coverage of multiple proteins physisorbed to surfaces. In this method adsorbed proteins are displaced by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and then analyzed by high performance liquid chromatography to separate and quantify the individual proteins, in this case bovine serum albumin (BSA) and bovine fibrinogen (Fg).

View Article and Find Full Text PDF

A novel and simple method of extraction, separation, identification and quantification of resiniferatoxin (RTX) in serum samples is reported. Human serum and whole blood were treated with acetonitrile to denature proteins, such as orosomucoid, and the soluble fraction was passed through a reversed-phase C18 cartridge. RTX eluted from the cartridge was quantified by high-performance liquid chromatography (HPLC) using a reversed-phase C18 column.

View Article and Find Full Text PDF

Depletion of calcium from the neuronal endoplasmic reticulum (ER) induces apoptosis. Isoflurane depletes calcium from sarcoplasmic reticulum (SR) of muscle, an analogue of ER in neurons, while sevoflurane maintains or increases SR calcium. We hypothesized that isoflurane, but not sevoflurane, induces apoptosis by depleting the ER calcium.

View Article and Find Full Text PDF

We tested the hypothesis that two biochemical markers of brain injury would be increased after cardiac surgery in patients with the apolipoprotein (Apo) epsilon4 allele. Arterial blood samples were drawn before and 8 and 24 h after induction of anesthesia and later assayed for neuron specific enolase (NSE), S-100beta, and apoE genotype. There was a highly significant temporal effect with increases in NSE (2.

View Article and Find Full Text PDF

A sensitive and simple high-performance liquid chromatographic (HPLC) assay was developed for the quantification of resiniferatoxin (RTX) in canine cerebrospinal fluid (CSF). A reversed-phase C(18) column and acetonitrile in 0.02 M NaH(2)PO(4) as mobile phase provided satisfactory resolution for RTX analysis.

View Article and Find Full Text PDF

With the aid of the experimental dependence of the theoretical plate height (H) on the flow-rate (U), values of diffusion coefficients as the permeation rate, of the compounds in a polymeric stationary phase were calculated from solute mass transfer. This approach is proposed for modeling the relative diffusion rate of a drug within the membrane. After the successful separation of opioid compounds using a C(18) derivatized polystyrene-divinylbenzene polymer HPLC column, the slopes of H-U plots increase quantitatively in the order of meperidine View Article and Find Full Text PDF

We utilized mice with homozygous disruption of angiotensin-converting enzyme (ACE) (-/-), mice with heterozygous deletion of ACE (+/-), and wild-type mice (+/+) to test the hypothesis that genetic variation in ACE modulates tissue and plasma angiotensin (ANG) II concentrations. With the use of ANG I as substrate, kidney, heart, and lung ACE activity was reduced 80% in -/- mice compared with +/+ mice. However, ANG II concentrations and ANG II-to-ANG I ratios in the kidney, heart, and lung did not differ among genotypes.

View Article and Find Full Text PDF

The direct measure of volatile anesthetic binding to protein is complicated by weak affinity and therefore rapid kinetics. Consequently, several puted targets for these clinically important drugs have only functional data to support a direct mode of action. While several methods for measuring some aspects of binding are available, all have significant limitations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1l3e2b33arn00hheb804lj8vc00otmi7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once