Publications by authors named "Qinfan Yao"

Article Synopsis
  • This study focuses on minimal change disease (MCD), a common type of nephrotic syndrome, aiming to create a predictive model for relapse probability in affected patients.
  • A total of 152 patients with confirmed MCD were assessed using Cox regression analysis to identify key risk factors for relapse and to develop a nomogram for predictions.
  • Key independent risk factors for relapse included high serum IgE levels, age ≤ 30, low eGFR, high cholesterol levels, and time to remission, with the nomogram showing strong predictive accuracy for relapse over 1-3 years.
View Article and Find Full Text PDF

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity.

View Article and Find Full Text PDF

Background: Clear-cell renal cell carcinoma (ccRCC) is one of prevalent kidney malignancies with an unfavorable prognosis. There is a need for a robust model to predict ccRCC patient survival and guide treatment decisions.

Methods: RNA-seq data and clinical information of ccRCC were obtained from the TCGA and ICGC databases.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is characterized as one of the most common types of urological cancer with high degrees of malignancy and mortality. Due to the limited effectiveness of existing traditional therapeutic methods and poor prognosis, the treatment and therapy of advanced ccRCC patients remain challenging. Tryptophan metabolism has been widely investigated because it significantly participates in the malignant traits of multiple cancers.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a common urinary cancer. Although diagnostic and therapeutic approaches for ccRCC have been improved, the survival outcomes of patients with advanced ccRCC remain unsatisfactory. Fatty acid metabolism (FAM) has been increasingly recognized as a critical modulator of cancer development.

View Article and Find Full Text PDF

The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression.

View Article and Find Full Text PDF

Background: Acute allograft rejection (AR) following renal transplantation contributes to chronic rejection and allograft dysfunction. The current diagnosis of AR remains dependent on renal allograft biopsy which cannot immediately detect renal allograft injury in the presence of AR. In this study, sensitive biomarkers for AR diagnosis were investigated and developed to protect renal function.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more than 200 nucleotides. Numerous studies have confirmed that lncRNA is relevant during multiple biological processes through the regulation of various genes, thus affecting disease progression. The lncRNA DRAIC, a newly discovered lncRNA, has been found to be abnormally expressed in a variety of diseases, particularly cancer.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) is a non-protein-coding RNA with a length of more than 200 nucleotides. Studies have shown that lncRNAs have vital impacts on various pathological processes and participate in the development of human diseases, usually through acting as competing endogenous RNAs to modulate miRNA expression and biological functions. lncRNA HOXA Cluster Antisense RNA 3 (HOXA-AS3) was a newly discovered lncRNA and has been demonstrated to be abnormally expressed in many diseases.

View Article and Find Full Text PDF

Numerous long noncoding RNAs (lncRNAs) have been identified as powerful regulators of human diseases. The lncRNA FOXD3-AS1 is a novel lncRNA that was recently shown to exert imperative roles in the initialization and progression of several diseases. Emerging studies have shown aberrant expression of FOXD3-AS1 and close correlation with pathophysiological traits of numerous diseases, particularly cancers.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are a major type of noncoding RNA greater than 200 nucleotides in length involved in important regulatory processes. Abnormal expression of certain lncRNAs contributes to the pathogenesis of multiple diseases, including cancers. The lncRNA LINC00707 is located on chromosome 10p14 and is abnormally expressed in numerous disease types, and particularly in several types of cancer.

View Article and Find Full Text PDF