Publications by authors named "QinCao Chen"

Article Synopsis
  • * A new advanced analytical method was used to study linalool compounds in 30 tea samples, revealing a significant relationship between bound and free forms of linalool during tea processing.
  • * Free linalool was not released as a main product during high-temperature roasting of teas, highlighting the importance of understanding chemical changes and conditions in tea production.
View Article and Find Full Text PDF

Fermentation is a vital process occurred under the premise of rolling affecting black tea quality. Theoretically, re-rolling during fermentation will remodel the biochemical conditions of tea leaves, and thus influence black tea quality. Herein, we studied the effect of re-rolling on black tea taste and liquor color.

View Article and Find Full Text PDF

Tea aroma greatly varies with the production date. This study investigated the aroma differences among black teas processed on different dates (March 23rd, April 8th, April 15th, April 27th, and May 7th) in the spring. A sensory evaluation showed that the black tea produced on April 15th had a strong and lasting sweet aroma and the highest score of 93.

View Article and Find Full Text PDF

Aroma is a vital factor influencing tea quality and value. It is a challenge to produce a kind of black tea with a floral/fruity aroma, good taste, and without a green/grassy odor simultaneously using small- and medium-leaf tea species. In this study, the effect of re-rolling treatment on the aroma quality of small-leaf Congou black tea was investigated using the methods of the equivalent quantification of aroma and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

The flower is the reproductive organ of the tea plant, while it is also processed into different kinds of products and thus of great significance to be utilized. In this study, the non-volatile secondary metabolites in the internal and external petals of white, white and pink, and pink tea flowers were studied using a widely targeted metabolomics method with ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 429 metabolites were identified, including 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins, 17 terpenoids, and 8 other metabolites.

View Article and Find Full Text PDF

Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS).

View Article and Find Full Text PDF

To comprehensively analyse flavour substance formation in Congou black tea, dynamic changes in non-volatile and volatile compositions and enzymatic activity were analysed. In total, 107 non-volatile and 222 volatile compositions were identified via ultra-high performance liquid chromatography coupled with quadrupole-exactive mass spectrometry (UHPLC-Q-Exactive/MS) and stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS), and eight metabolic pathways were explored during tea processing. Significant variations in metabolites were observed during processing (P < 0.

View Article and Find Full Text PDF

The present study aimed to systematically investigate black tea aroma formation during the fermentation period. In total, 158 volatile compounds were identified. Of these, most amino acid-derived volatiles (AADVs) and carotenoid-derived volatiles (CDVs) showed significant increases, while fatty acid-derived volatiles (FADVs) and volatile terpenoids (VTs) displayed diverse changes during the fermentation period.

View Article and Find Full Text PDF

The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei.

View Article and Find Full Text PDF

In this study, metabolomics and proteomics were employed to investigate the change mechanism of nonvolatile compounds during white tea processing. A total of 99 nonvolatile compounds were identified, among which the contents of 13 free amino acids, caffeine, theaflavins, 7 nucleosides and nucleotides, and 5 flavone glycosides increased significantly, while the contents of theanine, catechins, theasinesins, 3 proanthocyanidins, and phenolic acids decreased significantly during the withering period. The results of proteomics indicated that the degradation of proteins accounted for the increase in free amino acid levels; the weakened biosynthesis, in addition to oxidation, also contributed to the decrease in flavonoid levels; the degradation of ribonucleic acids contributed to the increase in nucleoside and nucleotide levels during the withering period.

View Article and Find Full Text PDF

Functional and nutritional compounds are increased during foxtail millet germination while bad smell is produced due to the fatty acid oxidation. To eliminate the unpleasant aroma, the origins of the volatiles must be known. A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry showed forty-nine volatiles containing 8 ketones, 10 aldehydes, 20 alkanes, 4 alcohols, 5 alkenes, and 2 furans were tentatively identified, and they increased during the germination of the foxtail millet.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how aroma develops during the processing of white tea, filling a gap in research that hadn't previously examined this systematically.
  • It identifies 172 volatile compounds, focusing on ones that change during the withering stage, highlighting the role of amino acids and glycosidically bound volatiles in aroma development.
  • The findings emphasize that both the expression of specific aroma-related genes and drying processes significantly impact the formation of white tea's distinctive aroma, offering insights for better quality control in tea production.
View Article and Find Full Text PDF

Thin-layer chromatography (TLC) method for the separation and quantitative determination of seven related compounds: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me) and (-)-epigallocatechin- 3-O-(4-O-methyl) gallate (EGCG4″Me) has been developed. The above-mentioned seven compounds have been resolved using polyamide TLC plates using a double-development with methanol followed by acetone/acetic acid (2:1, v/v). In addition, separation of the phenolic acids namely gallic acid, chlorogenic acid, and caffeic acid was achieved using the same solvent system.

View Article and Find Full Text PDF