Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1).
View Article and Find Full Text PDFMicrosomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes where they are involved in cholesterol excretion and metabolism, lipid digestion and regulating numerous signaling pathways. Previous studies have demonstrated the critical role of GATA-4 and a C/EBPα-NF/Y complex in the regulation of the mEH gene (EPHX1). In this study we show that HNF-4α and CAR/RXR also bind to the proximal promoter region and regulate EPHX1 expression.
View Article and Find Full Text PDFAmelogenin is the major protein component of the forming enamel matrix. In situ hybridization revealed a periodicity for amelogenin mRNA hybridization signals ranging from low to high transcript abundance on serial sections of developing mouse teeth. This in vivo observation led us to examine the amelogenin promoter for the activity of transcription factor(s) that account for this expression aspect of the regulation for the amelogenin gene.
View Article and Find Full Text PDFMicrosomal epoxide hydrolase (mEH) plays a central role in xenobiotic metabolism as well as mediating the sodium-dependent uptake of bile acids into the liver, where these compounds regulate numerous biological processes such as cholesterol metabolism and hepatocyte signaling pathways. Little is known, however, about the factors that control the constitutive and inducible expression of the mEH gene (EPHX1) that is altered during development and in response to numerous xenobiotics. In previous studies we have established that GATA-4 binding to the EPHX1 core promoter is critical for EPHX1 expression.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2004
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a crucial role in the metabolism of numerous xenobiotics as well as in mediating the hepatic sodium-dependent uptake of bile acids that are involved in numerous physiological processes including the regulation of cholesterol metabolism. The transcription factors and nuclear receptors that control the constitutive and inducible expression of the mEH gene (EPHX1), however, have not been described. To characterize these factors, a series of 5'-deletion constructs have been transfected into human liver-derived HepG2 cells as well as non-hepatic HeLa cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2003
The bifunctional hepatic protein, microsomal epoxide hydrolase (mEH), plays a central role in the metabolism of many xenobiotics as well as mediating the Na(+)-dependent uptake of bile acids in parallel with the Na(+)-taurocholate co-transporting protein (ntcp). Previous studies have established that mEH is expressed in the endoplasmic reticulum with two topological orientations, where the type II form is targeted to the plasma membrane. In this report the topology and transport properties of mEH as a function of plasma membrane expression in cultured hepatocytes, transfected Madin-Darby canine kidney cells expressing mEH (MDCK[mEH]), and the human hepatoma cell line, HepG2, were studied using confocal fluorescence microscopy and substrate uptake measurements.
View Article and Find Full Text PDFMicrosomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in carcinogen metabolism and is also able to mediate the sodium-dependent uptake of bile acids into hepatocytes. Studies have identified a subject (S-1) with extremely elevated serum bile salt levels in the absence of observable hepatocellular injury, suggesting a defect in bile acid uptake. In this individual, mEH protein and mEH mRNA levels were reduced by approximately 95% and 85%, respectively, whereas the expression and amino acid sequence of another bile acid transport protein (NTCP) was unaffected.
View Article and Find Full Text PDF