Publications by authors named "Qin-jun Peng"

A high power single-frequency operation at 1112 nm with novel insertable monolithic planar ring oscillator based on a Nd:YAG/YAG bonded crystal is proposed. In a proof-of-principle experiment, a finely designed coating on the output surface is carried out to ensure single-wavelength oscillation at 1112 nm, together with a half-wave plate and a TbGaO crystal inserted in the open space of the bonded block to realize the unidirectional operation with power scalability. Consequently, the single-frequency laser delivers an output power of 3.

View Article and Find Full Text PDF

We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials.

View Article and Find Full Text PDF

An external-cavity dumped nanosecond (ns) ultra-broad-area laser diode (UBALD) at around 966 nm with high pulse energy is demonstrated. A 1 mm UBALD is used to produce high output power and high pulse energy. A Pockels cell (PC) combines with two polarization beam splitters (PBSs) and is employed to cavity-dump a UBALD operating at 10 kHz repetition rate.

View Article and Find Full Text PDF

In this letter, a sub-pm linewidth, high pulse energy and high beam quality microsecond-pulse 766.699 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At an incident pump energy of 824 mJ, the maximum output energy of 132.

View Article and Find Full Text PDF

An integrated aberration-compensating module (IACM), consisting mainly of an adjustable slab-aberration compensator, a one-dimensional Shack-Hartmann wavefront sensor, and a data processor, which meet the urgent requirements of correcting the specific wavefront aberrations of a slab laser based on an off-axis stable-unstable resonator, is designed and experimentally demonstrated. Benefits include compactness, robustness, simplicity, automation, and cost-effectiveness. The particular wavefront aberrations of the 9 kW level quasi-continuous-wave Nd:YAG slab laser, which have characteristics of asymmetry, large amplitude and gradient, high spatial frequency, and low temporal frequency, were measured and theoretically analyzed.

View Article and Find Full Text PDF

A compact 200 W level diode-side-pumped microsecond (µs) pulse linearly polarized rod Nd:YAG laser oscillator was demonstrated with nearly diffraction-limited beam quality. The oscillator was based on a thermally near-unstable cavity design with two concave lenses in the cavity to enlarge the volume of the fundamental mode, leading to improvement of the laser efficiency and beam quality. Consequently, a record-high average power of 222 W was obtained at a repetition rate of 400 Hz with a 180 µs pulse width, corresponding to an optical-to-optical (o-o) conversion efficiency of 37%.

View Article and Find Full Text PDF

We present a kilowatt-level quasi-continuous-wave (QCW) cryogenically cooled 946-nm slab laser oscillator for the first time, to the best of our knowledge. The laser system is based on a double-face-pumped large-size single-slab Nd:YAG design, delivering a record-high average power of 1.06 kW without additional amplification.

View Article and Find Full Text PDF

The geometric aberration of centered refracting double-plane symmetric optical systems (DPSOS) is investigated. For DPSOS with different defocus values in the tangential plane and the sagittal plane (astigmatic wavefront), a pair of curved reference surfaces which vanishes the quadratic terms of the optical path difference (OPD) between a general ray and a reference ray are deduced. With the curved reference surfaces, the primary (fourth-order) wave aberration function for DPSOS is calculated and analyzed, which can be used for beam shaping designs with astigmatic input wavefront, such as slab lasers and semiconductor lasers.

View Article and Find Full Text PDF

A compact and robust all-solid-state mid-infrared (MIR) laser at 6.45 µm with high average output power and near-Gaussian beam quality is demonstrated. A maximum output power of 1.

View Article and Find Full Text PDF

For reshaping aperture size and correcting low-order aberration of laser beams with large aspect ratios, a simplified analytical method is proposed to design an anamorphic refractive shaping system, which is composed of double-plane symmetric lenses. The simplified method enables performing a global study of aberrations via calculating the analytical primary wave aberration function under paraxial approximation. The aberration balance is analyzed with a three-lens laser collimating system and a compact four-lens laser expanding system.

View Article and Find Full Text PDF

A high-power continuous-wave (CW) ultraviolet (UV) laser at 378 nm from an intracavity frequency-doubled Alexandrite laser has been demonstrated with 638 nm fiber-coupled laser diodes as the pump source. A maximum output power of 2.55 W was obtained, which is the highest power for CW frequency-doubled Alexandrite lasers, to the best of our knowledge, corresponding to the optical-to-optical conversion efficiency of 7.

View Article and Find Full Text PDF

High-power solid-state lasers with good beam quality are attracting great attention on account of their important applications in industry and military. However, the thermal effects generated in the laser host materials seriously limit power scaling and degrade the beam quality. Thermal lensing and thermally induced wavefront deformation are the main causes of the beam quality deterioration.

View Article and Find Full Text PDF

A stable, 22.9 W, 671 nm single-frequency laser using a type II noncritically phase-matched external-cavity frequency doubling is demonstrated. The output power of the fundamental laser is 32.

View Article and Find Full Text PDF
Article Synopsis
  • A high-power yellow laser at 589 nm is essential for sodium beacon adaptive optics systems in telescopes.
  • A new compact quasi-continuous-wave (QCW) solid-state laser achieves 86.1 W output power with high beam quality, adjustable pulse durations, and repetition rates between 400 Hz and 1 kHz.
  • This laser can be finely tuned to the sodium D line, making it the most powerful all-solid-state sodium guide star laser reported, advancing multi-conjugate adaptive optics for large telescopes.
View Article and Find Full Text PDF

A 100 W level kilohertz repetition-rate microsecond (µs)-pulse all-solid-state sodium beacon laser at 589 nm is demonstrated for the first time, to the best of our knowledge, via combining two independent µs-pulsed lasers. Each beamlet is generated by the sum-frequency mixing of pulsed 1064 and 1319 nm lasers in a lithium triborate (LBO) crystal, which operate at 500 Hz pulse repetition frequency with 61 W $p$p-polarized and 53 W $s$s-polarized output, respectively. An incoherent sequence combining technology of polarized laser beams is employed to add the two beamlets.

View Article and Find Full Text PDF

We present a power-scalable high-power single-frequency continuous-wave 1342 nm master oscillator power amplifier (MOPA) system that consists of a polarized single-frequency 1342 nm LD seed laser, a Raman fiber preamplifier, and a three-stage ${\rm Nd}:{{\rm YVO}_4}$Nd:YVO power amplifier. The single-frequency output power of 30 W at 1342 nm is achieved with the beam quality factors ${{\rm M}^{2\:}} = {1}.{26}$M=1.

View Article and Find Full Text PDF

A void-free bonding technique was demonstrated for a large slab Nd: YAG crystal with a bonding surface dimension of ∼160×70. By using the novel fluxless oxide layer removal technology, the indium-oxide barrier problem was resolved. With the help of electrochemical-polished indium solder and a plasma-cleaned heat sink, the solderability of the indium was enhanced; in particular, the contact angle of the solder was improved from 51° to 31°.

View Article and Find Full Text PDF

A dual-wavelength ${{\rm TEM}_{01}}$TEM mode synchronous continuous wave passively mode-locked (CWML) Nd:YAG laser has been demonstrated for the first time to the best of our knowledge with a semiconductor saturable absorber mirror (SESAM) at 1319 and 1338 nm. The maximum average output power of 10.84 W was obtained at a 113.

View Article and Find Full Text PDF

We report a compact, long nanosecond (ns) pulse duration stretched laser source by a multi-pass cavity (MPC). Based on the combination of the MPC and pump power, a high-power high beam quality 1064 nm Q-switched Nd:YAG laser with a pulse duration adjustable over the range of 160-1000 ns was obtained at a pulse repetition frequency of 10 kHz for the first time, to the best of our knowledge. At a typical pulse width of 560 ns, an average output power of 10.

View Article and Find Full Text PDF

The polychromatic laser guide star (PLGS) is one of the solutions proposed to measure the differential atmospheric tip-tilt. A watts-level microsecond pulse all solid state laser source with two wavelengths at 589 and 819.7 nm are developed to perform a proof-of-concept on-sky test for what is believed to be the first time.

View Article and Find Full Text PDF

Slab gain media with large aspect ratios were difficult to be adopted in ultrafast regenerative amplifiers (RAs) due to the obstacle of mode matching with the seed beam. We proposed that an unstable cavity could be employed to solve this difficulty by taking the advantage of its large fundamental mode volume. In this way, an Nd:YVO slab-based picosecond RA has been successfully demonstrated using a stable-unstable hybrid cavity.

View Article and Find Full Text PDF

We report a high-energy single-frequency deep-ultraviolet (DUV) solid-state laser at 167.079 nm by the eighth-harmonic generation of a diode-pumped Nd:LGGG laser. A maximum DUV laser output energy of 1.

View Article and Find Full Text PDF

We have proposed a novel approach to realize a high-energy ultrafast optical parametric oscillator (OPO) by intracavity pumping in a regenerative amplifier. In this way, we have experimentally demonstrated an unprecedented pulse energy of 30.5 μJ from a 1.

View Article and Find Full Text PDF

A pulse width adjustable 1064 nm Q-switched cavity dumped Nd:YVO laser was realized for the first time, to the best of our knowledge, by rotating an intracavity quarter-wave plate (QWP) and a Pockels cell (PC). The pulse width adjustment range was 4.8-7.

View Article and Find Full Text PDF

A picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) with LiInSe crystal was demonstrated for the first time. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser and injected by a barium boron oxide (BBO)-based widely tunable near-infrared seed. A maximum idler pulse energy of 433 μJ at 4 μm has been obtained under a pump energy of 17 mJ, and the corresponding pulse duration was estimated to be ~13 ps.

View Article and Find Full Text PDF