Publications by authors named "Qin-Hua Gu"

The mechanism of long-term depression (LTD), a cellular substrate for learning, memory, and behavioral flexibility, is extensively studied in Schaffer collateral (SC) synapses, with inhibition of autophagy identified as a key factor. SC inputs terminate at basal and proximal apical dendrites, whereas distal apical dendrites receive inputs from the temporoammonic pathway (TAP). Here, we demonstrate that TAP and SC synapses have a shared LTD mechanism reliant on NMDA receptors, caspase-3, and autophagy inhibition.

View Article and Find Full Text PDF

Background: The odontogenic jaw cyst is a cavity containing liquid, semifluid or gaseous components, with the development of the disease. In recent years, with the rapid development of oral materials and the transformation of treatment of jaw cysts, more options are available for treatment of postoperative bone defect of jaw cysts. Guided bone regeneration (GBR) places biomaterials in the bone defect, and then uses biofilm to separate the proliferative soft tissue and the slow-growing bone tissue to maintain the space for bone regeneration, which is widely used in the field of implantology.

View Article and Find Full Text PDF

Long-term potentiation (LTP) is a form of synaptic plasticity that results in enhanced synaptic strength. It is associated with the formation and enlargement of dendritic spines-tiny protrusions accommodating excitatory synapses. Both LTP and spine remodelling are crucial for brain development, cognition and the pathophysiology of neurological disorders.

View Article and Find Full Text PDF

NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity leading to long-lasting decreases in synaptic strength. NMDAR-LTD is essential for spatial and working memory, but its role in hippocampus-dependent fear memory has yet to be determined. Induction of NMDAR-LTD requires the activation of caspase-3 by cytochrome c.

View Article and Find Full Text PDF

Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodelling of spines. The mechanisms underlying long-lasting spine remodelling in NMDAR-LTD, however, are largely unclear.

View Article and Find Full Text PDF

In vivo experience induces changes in synaptic NMDA receptor (NMDAR) subunit components, which are correlated with subsequent modifications of synaptic plasticity. However, little is known about how these subunit changes regulate the induction threshold of subsequent plasticity. At hippocampal Schaffer collateral-CA1 synapses, we first examined whether a recent history of neuronal activity could affect subsequent synaptic plasticity through its actions on NMDAR subunit components.

View Article and Find Full Text PDF

Although an increasing number of studies have demonstrated the plasticity of NMDA receptor-mediated synaptic transmission, little is known about the molecular mechanisms that underlie this neurologically important process. In a study of NMDAR-mediated synaptic responses in hippocampal Schaffer-CA1 synapses whose AMPA receptor (AMPAR) activity is totally blocked, we uncovered differences between the trafficking mechanisms that underlie the long-term potentiation (LTP) and long-term depression (LTD) that can be induced in these cells under these conditions. The LTP-producing protocol failed to induce a change in the amplitude of NMDAR-mediated postsynaptic currents (NMDAR EPSCs) in the first 5-10 min, but induced gradual enhancement of NMDAR EPSCs thereafter that soon reached a stable magnitude.

View Article and Find Full Text PDF

Lateral diffusion of glutamate receptors was proposed as a mechanism for regulating receptor numbers at synapses and affecting synaptic functions, especially the efficiency of synaptic transmission. However, a direct link between receptor lateral diffusion and change in synaptic function has not yet been established. In the present study, we demonstrated NMDA receptor (NMDAR) lateral diffusion in CA1 neurons in hippocampal slices by detecting considerable recovery of spontaneous or evoked EPSCs from the block of (+)-MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an irreversible NMDAR open-channel blocker.

View Article and Find Full Text PDF