In visual-imagery-based brain-computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks.
View Article and Find Full Text PDFThe pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men.
View Article and Find Full Text PDFCell Mol Life Sci
September 2024
Emerging evidence indicates that activation of complement system leading to the formation of the membrane attack complex (MAC) plays a detrimental role in COVID-19. However, their pathogenic roles have never been experimentally investigated before. We used three knock out mice strains (1.
View Article and Find Full Text PDFHIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD).
View Article and Find Full Text PDFBrain-machine interface (BMI) can convert electroencephalography signals (EEGs) into the control instructions of external devices, and the key of control performance is the accuracy and efficiency of decoder. However, the performance of different decoders obtaining control instructions from complex and variable EEG signals is very different and irregular in the different neural information transfer model. Aiming at this problem, the off-line and on-line performance of eight decoders based on the improved single-joint information transmission (SJIT) model is compared and analyzed in this paper, which can provide a theoretical guidance for decoder design.
View Article and Find Full Text PDFComputational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure-activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity.
View Article and Find Full Text PDFHIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2024
Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant).
View Article and Find Full Text PDFCell Death Discov
May 2024
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis.
View Article and Find Full Text PDFCell Mol Life Sci
February 2024
The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus.
View Article and Find Full Text PDFSARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI).
View Article and Find Full Text PDFIn the field of brain-to-text communication, it is difficult to finish highly dexterous behaviors of writing multi-character by motor-imagery-based brain-computer interface (MI-BCI), setting a barrier to restore communication in people who have lost the ability to move and speak. In this paper, we design and implement a multi-character classification scheme based on 29 characters of motor imagery (MI) electroencephalogram (EEG) signals, which contains 26 English letters and 3 punctuation marks. Firstly, we design a novel experimental paradigm to increase the variety of BCI inputs by asking subjects to imagine the movement of writing 29 characters instead of gross motor skills such as reaching or grasping.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2023
Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney's innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit ()-Cre (B1-Cre) mice. Although is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system.
View Article and Find Full Text PDFSingle-cell RNA-seq has been used to characterize human COVID-19. To determine if preclinical models successfully mimic the cell-intrinsic and -extrinsic effects of severe disease, we conducted a meta-analysis of single-cell data across five model species. To assess whether dissemination of viral RNA in lung cells tracks pathology and results in cell-intrinsic and -extrinsic transcriptomic changes in COVID-19.
View Article and Find Full Text PDFWithin arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis.
View Article and Find Full Text PDFIntroduction: Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities.
View Article and Find Full Text PDFSegmentation of anatomical structures in ultrasound images is a challenging task due to existence of artifacts inherit to the modality such as speckle noise, attenuation, shadowing, uneven textures and blurred boundaries. This paper presents a novel attention-based predict-refine network, called ACUE-Net, for segmentation of soft-tissue structures in ultrasound images. The network consists of two modules: a predict module, which is built upon our newly proposed attentive coordinate convolution; and a novel multi-head residual refinement module, which consists of three parallel residual refinement modules.
View Article and Find Full Text PDFIncreasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology.
View Article and Find Full Text PDFImmune-mediated hepatitis is marked by liver inflammation characterized by immune cell infiltration, chemokine/cytokine production, and hepatocyte injury. C-X3C motif receptor 1 (CX3CR1), as the receptor of chemokine C-X3C motif ligand 1 (CX3CL1)/fractalkine, is mainly expressed on immune cells including monocytes and T cells. Previous studies have shown that CX3CR1 protects against liver fibrosis, but the exact role of CX3CL1/CX3CR1 in acute immune-mediated hepatitis remains unknown.
View Article and Find Full Text PDFAm J Respir Crit Care Med
November 2022