Publications by authors named "Qin Shili"

Hypochlorite (ClO) as a kind of highly toxic pollutant has garnered significant interest in detection methods, highlighting the pressing need to develop intelligent functional materials for the qualitative and quantitative analysis of ClO in aqueous solutions. Herein, a ratiometric fluorescent sensor was prepared by the combination of acriflavine (Acr) and UIO-66 via a post-synthetic modification strategy. Acr/UIO-66 exhibited both high crystallinity typical of metal-organic frameworks and demonstrated good fluorescent and thermal stability.

View Article and Find Full Text PDF

The excellent stability of covalent organic frameworks (COFs) and the diversity of metal organic frameworks (MOFs) make MOF/COF hybrid materials promising candidates for chromatographic stationary phases. In this paper, a TpBD/UiO-66-NH hybrid material was synthesized through a Schiff-base reaction between TpBD COFs and UiO-66-NH MOFs; characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy; and bonded to a capillary to prepare a TpBD/UiO-66-NH-bonded open tubular capillary electrochromatography (OT-CEC) column. Results suggested that the hybrid material had the crystal morphology of a single COF and MOF, a micro-mesoporous structure, and good thermal stability.

View Article and Find Full Text PDF

In this study, three different materials were prepared: dendritic fiber-type silica (KCC-1), zeolitic imidazolate framework-8 (ZIF-8), and a new composite material called KCC-1@ZIF-8. These materials were synthesized using microemulsion, stirring, and coating methods, respectively. The properties of the materials were characterized using various techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), TGA and X-ray diffraction (XRD).

View Article and Find Full Text PDF

A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg. The dual-functional sensor was successfully prepared the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), H nuclear magnetic resonance (H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.

View Article and Find Full Text PDF

A zeolitic imidazolate framework (ZIF)-8-silica hybrid monolithic column was prepared by one-step sol-gel method. The stationary phase in the monolithic column was characterized by Fourier-transform infrared spectra, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption/desorption, and zeta potential. The results showed that ZIF-8-silica hybrid monolithic materials had abundant functional groups, good crystallinity, large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Light harvesting based on a microporous zeolite imidazole backbone (MOF) has attracted considerable interest as a fluorescent sensor for the detection of analytes. In this work, we have prepared a novel complex containing quantum dots of doped rare earth elements by a one-pot method. to be applied to the fluorescence detection of pollution hazards.

View Article and Find Full Text PDF

A novel chiral covalent organic framework (CCOF) was synthesized with an imine covalent organic framework TpBD (synthesized via Schiff-base reaction between phloroglucinol (Tp) and benzidine (BD)) modified using (1S)-(+)-10-camphorsulfonyl chloride as chiral ligand by chemical bonding method for the first time, and was characterized by X-ray diffraction, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption, thermogravimetry analysis, and zeta-potential. The results revealed that the CCOF had good crystallinity, high specific surface area and good thermal stability. Then, the CCOF was employed as stationary phase in open-tubular capillary electrochromatography (OT-CEC) column (the CCOF-bonded OT-CEC column) for enantioseparation of 21 single chiral compounds (12 natural amino acids including acidic, neutral and basic, 9 pesticides including herbicides, insecticides and fungicides) and simultaneous enantioseparation of mixture amino acids and pesticides with similar structures or properties.

View Article and Find Full Text PDF

We report a post-synthesis modification for the preparation of a novel chiral fluorescent covalent organic framework (COF) for selective recognization of imazamox enantiomers. In this study, chiral COF was firstly synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by a nucleophilic substitution using (1S)-(+)-10-camphorsulfonyl chloride as chiral modifier. The resulting regular spherical chiral COF Dha Tab not only presented the high optical efficiency, strong covalent bond structure, good crystallinity, large specific surface area but also showed the specific enantioselectivity and quick identification for imazamox enantiomers among five pesticide enantiomers (S/R-imazamox, acephate, acetochlor, propisochlor and metalaxyl).

View Article and Find Full Text PDF

Hg is one of the most toxic chemical species in the water environment, and thus developing a new fluorescent covalent organic framework for both the detection and removal of Hg is highly desirable. Herein, a fluorescent composite, termed TpPa-1 COF@CDs, was synthesized by inverse emulsion polymerization method using an imine covalent organic framework as the supporting material and carbon dots as the fluorescent sensor element. The crystallinity, porosity, rich functional receptors (hydroxyl and amino groups), thermal stability and fluorescent properties of TpPa-1 COF@CDs were characterized.

View Article and Find Full Text PDF

We developed a novel, convenient and low-cost one-pot strategy for preparing a zeolitic imidazolate framework-8 (ZIF-8)-silica hybrid monolithic column by adding ZIF-8 directly to a polymer solution of the silica matrix. The simulated stationary phase and monolithic column prepared under optimal conditions were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis nitrogen physisorption and zeta potential. The results obtained confirmed the successful introduction of ZIF-8 into the silica monolithic column, and the prepared monolithic column exhibited good permeability and physicochemical stability.

View Article and Find Full Text PDF

In this study, three types of chiral fluorescent zirconium-based metal-organic framework materials were synthesized using l-dibenzoyl tartaric acid as the chiral modifier by the solvent-assisted ligand incorporation method, which was the porous coordination network yellow material, denoted as PCN-128Y. PCN-128Y-1 and PCN-128Y-2 featured unique chiral selectivity for the Gln enantiomers amongst seven acids and the highly stable luminescence property, which were caused by the heterochiral interaction and aggregation-induced emission. Furthermore, a rapid fluorescence method for the chiral detection of glutamine (Gln) enantiomers was developed.

View Article and Find Full Text PDF

A new kind of chiral zirconium based metal-organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m g), thermal stability and chiral recognition performance.

View Article and Find Full Text PDF

A novel chiral stationary phase (CSP) of Zr-based metal-organic framework, l-Cys-PCN-224, was prepared by one-pot method and applied for the enantioseparation by capillary electrochromatography. The CSP was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential, and so on. The results revealed that the CSP had good crystallinity, high specific surface area (2580 m /g), and good thermal stability.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have been recognized as promising solid phases in capillary electrochromatography (CEC). Imine-based COF-coated open-tubular CEC column (COF TpBD-coated OT column) was prepared and characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), nitrogen adsorption/desorption (Brunauer-Emmett-Teller [BET]), and scanning electron microscopy (SEM). The results showed that the column efficiency was up to 26,776 plate/m, and the thickness of stationary phase was about 6.

View Article and Find Full Text PDF

Luminescent Ln-MOFs (EuTb-MOF) were successfully synthesised through the solvothermal reaction of Tb(NO)·6HO, Eu(NO)·6HO, and the ligand pyromellitic acid. The product was characterised by X-ray diffraction (XRD), TG analysis, EM, X-ray photoelectron spectroscopy (XPS), and luminescence properties, and results show that the synthesised material EuTb-MOF has a selective ratio-based fluorescence response to Fe or CrO. On the basis of the internal filtering effect, the fluorescence detection experiment shows that as the concentration of Fe or CrO increases, the intensity of the characteristic emission peak at 544 nm of Tb decreases, and the intensity of the characteristic emission peak at 653 nm of Eu increases in EuTb-MOF.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) as a novel stationary phase have attracted much attention in the field of chromatography owing to their permanent nanoscale porosity, higher surface area, and exceptional stabilities. Here, a novel isocyanate-β-cyclodextrin-modified COF (MDI-β-CD-modified COF) was synthesized using isocyanate-β-cyclodextrin as the chiral selector and imine-based TpPa-1 COF as the matrix by a bottom-up strategy. The reaction condition and the structure of MDI-β-CD-modified COF were optimized and characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, nitrogen adsorption/desorption (Brunauer-Emmett-Teller [BET]), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

A molecularly imprinted monolith was prepared and evaluated for the special selective separation of sulfamerazine (SMR) by capillary electrochromatography (CEC). The single-step polymerization method was applied through thermally immobilized vinyl groups of itaconic acid and a derivatization capillary column using SMR as the template. The monolith with optimal selectivity and permeability was performed at 45°C for 7 h according to the molar ratios of 1 : 4 : 10 (template/functional monomer/cross-linker).

View Article and Find Full Text PDF

Directly synthesizing bicomponent electrocatalysts in the nanostructured form from bulk alloy foam has many potential advantages: robust stability, synergistic effects and fast electron transfer. Here, NiFeS/NiS film with micrometer thickness on bulk substrate was synthesized by a simple one-step hydrothermally assisted sulfurization of NiFe alloy foam for the oxygen evolution reaction (OER) in basic media. Benefiting from the synergetic effect of the bicomponent, reduced interfacial resistance between electrocatalyst and metal substrate, and more exposed catalytic sites on the microstructured film, the as-prepared electrocatalyst (NiFeS/NiS‖NiFe) behaves as a highly efficient and robust oxygen evolution electrode with felicitous current density in alkaline electrolytes (1 M KOH).

View Article and Find Full Text PDF

In order to use the enantioseparation capability of cationic cyclodextrin and to combine the advantages of capillary electrochromatography (CEC) with open-tubular (OT) column, in this study, a new OT-CEC, coated with cationic cyclodextrin (1-allylimidazolium-β-cyclodextrin [AI-β-CD]) as chiral stationary phase (CSP), was prepared and applied for enantioseparation. Synthesized AI-β-CD was characterized by infrared (IR) spectrometry and mass spectrometry (MS). The preparation conditions for the AI-β-CD-coated column were optimized with the orthogonal experiment design L (3 ).

View Article and Find Full Text PDF

The cuprous oxide nanoparticle (CuO NP)-doped hollow carbon nanofibres (CuO/HCFs) were directly synthesized by the anodic aluminium oxide (AAO) template. The doped CuO NPs were formed by deposition by direct reduction reaction of precursor carbonization in thermal decomposition and could act as functionalized nanoparticles. The synthesized CuO/HCFs were characterized in detail by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF