Am J Physiol Cell Physiol
January 2020
We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of β-catenin.
View Article and Find Full Text PDFWe have recently published that type 2 diabetes can induce cell centrosome amplification due to the action of high glucose, palmitic acid, and insulin, and ROCK1 and 14-3-3σ are signal mediators. In this study, we further investigated the molecular mechanisms of the centrosome amplification in colon cancer HCT116 cells. Treatment of the cells with high glucose, palmitic acid, and insulin increased the expression of peroxisome proliferator-activated receptor γ (PPARγ) as well as the spindle and kinetochore associated protein 1 (SKA1), knockdown of each of which resulted in the inhibition of the treatment-triggered centrosome amplification.
View Article and Find Full Text PDF