The fabrication of thin films comprising ordered nanowire assemblies with emerging, precisely defined properties and adjustable functionalities enables highly integrated technologies in the fields of microelectronics and micro system technology, as well as for efficient power generation, storage, and utilization. Shear force, theoretically, is deemed the most promising method for obtaining in-plane, uniaxial thin films comprising nanowires. The success depends largely on the assembly process, and uniform structural control throughout multiple length scales can be achieved only if a rational strategy is executed.
View Article and Find Full Text PDFAlthough challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.
View Article and Find Full Text PDFWe apply direct ink writing for the three-dimensional (3D) printing of polyaniline/reduced graphene oxide (PANI/RGO) composites with PANI/graphene oxide (PANI/GO) gel as printable inks. The PANI/GO gel inks for 3D printing are prepared via self-assembly of PANI and GO in a blend solvent of N-methyl-2-pyrrolidinone and water, and offer both shaping capability, self-sustainability, and electrical conductivity after reduction of GO. PANI/RGO interdigital electrodes are fabricated with 3D printing, and based on these electrodes, a planar solid-state supercapacitor is constructed, which exhibits high performance with an areal specific capacitance of 1329 mF cm.
View Article and Find Full Text PDFActive electrolyte enhanced supercapacitors (AEESCs) have received increasing attention because of their large specific capacitance and easy fabrication process. The better matching between the active electrolyte and the counter electrode and the slow self-discharge rate are the challenges of this type of supercapacitor. In this paper, a novel AEESC with polyaniline/reduced graphene oxide hydrogel (PANI/RGOHG) as the anode and Cu(ii) ions as the cathodic active electrolyte is constructed.
View Article and Find Full Text PDFAlthough organic small molecule spiro-OMeTAD is widely used as a hole-transport material in perovskite solar cells, its limited electric conductivity poses a bottleneck in the efficiency improvement of perovskite solar cells. Here, a low-cost and easy-fabrication technique is developed to enhance the conductivity and hole-extraction ability of spiro-OMeTAD by doping it with commercially available benzoyl peroxide (BPO). The experimental results show that the conductivity increases several orders of magnitude, from 6.
View Article and Find Full Text PDFPolyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites.
View Article and Find Full Text PDF