Publications by authors named "Qilin Feng"

Perovskite fluorides are attractive anode materials for lithium-ion batteries (LIBs) because of their three-dimensional diffusion channels and robust structures, which are advantageous for the rapid transmission of lithium ions. Unfortunately, the wide band gap results in poor electronic conductivity, which limits their further development and application. Herein, the cubic perovskite iron fluoride (KFeF, KFF) nanocrystals (∼100 nm) are synthesized by a one-step solvothermal strategy.

View Article and Find Full Text PDF

Low-cost graphite has emerged as the most promising anode material for potassium-ion batteries (PIBs). Constructing the inorganic-rich solid electrolyte interface (SEI) on the surface of graphite anode is crucial for achieving superior electrochemical performance of PIBs. However, the compositions of SEI formed by conventional strongly solvating electrolytes are mainly organic, leading to the SEI structure being thick and causing the co-intercalation behavior of ions with the solvent.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application.

View Article and Find Full Text PDF

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention.

View Article and Find Full Text PDF

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear.

View Article and Find Full Text PDF

Intimate coupling photocatalysis and biodegradation treatment technology is an emerging technology in the treatment of refractory organic matter, and the carrier plays an important role in this technology. In this paper, sugarcane cellulose was used as the basic skeleton, absorbent cotton was used as a reinforcing agent, anhydrous sodium sulfate was used as a pore-forming agent to prepare a cellulose porous support with good photocatalytic performance, and nano-TiO was loaded onto it by a low-temperature bonding method. The results showed that the optimal preparation conditions of cellulose carriers were: cellulose mass fraction 1.

View Article and Find Full Text PDF

Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products.

View Article and Find Full Text PDF

The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics.

View Article and Find Full Text PDF

Background: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model.

View Article and Find Full Text PDF

In this study, the visible-light-induced intimately coupled photocatalysis and biodegradation (ICPB) technology was fabricated using the TiO/bagasse cellulose composite as the carrier and Phanerochaete mixed activated sludge as the biological source. The ICPB degradation effect of elemental chlorine free (ECF) bleaching wastewater was evaluated via the response surface design. Then, the wastewater was characterized, including absorbable organic halogen (AOX), dissolved organic carbon (DOC), chemical oxygen demand (COD), chroma, pH, suspended solids, and the organic compound changes in wastewater were analyzed by fourier transform infrared spectroscopy (FT-IR).

View Article and Find Full Text PDF

Multiple myeloma (MM) is a malignant disease characterized by abnormal proliferation of clonal plasma cells. Based on the organic drug osalmid, the novel small molecule compound DCZ0858 was designed and synthesized for treating MM. DCZ0858 inhibited the proliferation and activity of MM cells and reduced colony formation.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a highly invasive and incurable plasma cell malignant disease with frequent recurrence. DCZ0801 is a natural compound synthesized from osalmide and pterostilbene and has few adverse effects. Here, we aimed to observe the therapeutic effects of DCZ0801 on myeloma cells and clarify the specific molecular mechanism underlying its anti-tumor activity.

View Article and Find Full Text PDF

Background: DCZ3301, a novel aryl-guanidino compound previously reported by our group, exerts cytotoxic effects against multiple myeloma (MM), diffused large B cell lymphoma (DLBCL), and T-cell leukemia/lymphoma. However, the underlying mechanism of its action remains unknown.

Methods: We generated bortezomib (BTZ)-resistant cell lines, treated them with various concentrations of DCZ3301 over varying periods, and studied its effect on colony formation, cell proliferation, apoptosis, cell cycle, DNA synthesis, and DNA damage response.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignant tumor characterized by diffuse growth. DCZ0858 is a novel small molecule with excellent antitumor effects in DLBCL. This study explored in depth the inhibitory effect of DCZ0858 on DLBCL cell lines.

View Article and Find Full Text PDF

Source localization is critical to ensuring indoor air quality and environmental safety. Although considerable research has been conducted on source localization in steady-state indoor environments, very few studies have dealt with the more challenging source localization problems in dynamic indoor environments. This paper presents a comprehensive particle swarm optimization (CPSO) method to locate a contaminant source in dynamic indoor environments with mechanical ventilation and develops a multi-robot source localization system to experimentally validate the method.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable hematological malignancy, for which novel effective therapies are urgently needed. We synthesized a novel phosphoramide compound, DCZ0847, showing a potent anti-myeloma activity both in vitro and in vivo. DCZ0847 showed high cytotoxicity towards primary MM cells but had no effect on normal cells and was well tolerated in vivo.

View Article and Find Full Text PDF

Aims: Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive lymphoid malignancies, which remains incurable, thus warranting the development of new therapies. Our previous study determined that rafoxanide is very effective in treating multiple myeloma (MM). In the present study, we tried to evaluate the effects of rafoxanide on DLBCL, as well as the potential underlying molecular mechanisms.

View Article and Find Full Text PDF

: Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease characterized by synovitis as well as symmetric and destructive arthropathy. Although several disease modified antirheumatic-drugs (DMARDs) have widely used in clinical practice, certain patients are nonresponsive to or cannot take such medications due to adverse reactions. It is evident that Janus kinase (JAK) inhibitors have the potential to provide a significant breakthrough in the treatment of RA.

View Article and Find Full Text PDF