Int J Environ Res Public Health
August 2022
Boron overabundance in aquatic environment raises severe concerns about the environment and human health because it is toxic to various crops and induces many human and animal diseases with long-term consequences. In response to the boron pollution of water resources and the difficulty of eliminating boron from water for production and living purposes, this article summarizes the progress in research on boron removal technology, addressing the following aspects: (1) the reasons for the difficulty of removing boron from water (boron chemistry); (2) ecological/biological toxicity and established regulations; (3) analysis of different existing processes (membrane processes, resin, adsorption, chemical precipitation, (electric) coagulation, extraction, and combined methods) in terms of their mechanisms, effectiveness, and limitations; (4) prospects for future studies and possible improvements in applicability and recyclability. The focus of this paper is thus to provide a comprehensive summary of reported deboronation processes to date, which will definitely identify directions for the development of boron removal technology in the future.
View Article and Find Full Text PDFThe production of reactive oxygen species (ROS) is a ubiquitous defense response in plants. Adapted pathogens evolved mechanisms to counteract the deleterious effects of host-derived ROS and promote infection. How plant pathogens regulate this elaborate response against ROS burst remains unclear.
View Article and Find Full Text PDFThe type 2A (PP2A) and type 2A-like (PP4 and PP6) serine/threonine phosphatases participate in a variety of cellular processes, such as cell cycle progression, signal transduction and apoptosis. Previously, we reported that the PP6 catalytic subunit MoPpe1, which interacts with and is suppressed by type 2A associated protein of 42 kDa (MoTap42), an essential protein involved in the target of rapamycin (TOR) signalling pathway, has important roles in development, virulence and activation of the cell wall integrity (CWI) pathway in the rice blast fungus Magnaporthe oryzae. Here, we show that Tap42-interacting protein 41 (MoTip41) mediates crosstalk between the TOR and CWI signalling pathways; and participates in the TOR pathway via interaction with MoPpe1, but not MoTap42.
View Article and Find Full Text PDF