Publications by authors named "Qikai Xing"

Chinese cherry belongs to the family Rosaceae, genus Prunus, and has high nutritional and economic value. 'Duiying' is a Chinese cherry variety local to Beijing, and has better performance than sweet cherry in terms of disease resistance. However, disease resistance resources of 'Duiying' have not been fully exploited partially due to the lack of a high-quality genome.

View Article and Find Full Text PDF

High temperatures associated with a fluctuating climate profoundly accelerate the occurrence of a myriad of plant diseases around the world. A comprehensive insight into how plants respond to pathogenic microorganisms under high-temperature stress is required for plant disease management, whereas the underlying mechanisms behind temperature-mediated plant immunity and pathogen pathogenicity are still unclear. Here, we evaluated the effect of high temperature on the development of grapevine canker disease and quantified the contribution of temperature variation to the gene transcription reprogramming of grapevine and its pathogenic agent using a dual RNA-seq approach.

View Article and Find Full Text PDF

Lasiodiplodia theobromae is a causal agent of Botryosphaeria dieback, which seriously threatens grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses and promote the progression of infection, but the mechanisms underlying the manipulation of host immunity by L. theobromae effectors are poorly understood.

View Article and Find Full Text PDF

The NmrA-like proteins have been reported to be important nitrogen metabolism regulators and virulence factors in herbaceous plant pathogens. However, their role in the woody plant pathogen is less clear. In the current study, we identified a putative NmrA-like protein, Lws1, in and investigated its pathogenic role via gene silencing and overexpression experiments.

View Article and Find Full Text PDF

is a causal agent of grapevine trunk disease, and it poses a significant threat to the grape industry worldwide. Fungal effectors play an essential role in the interaction between plants and pathogens. However, few studies have been conducted to understand the functions of individual effectors in .

View Article and Find Full Text PDF

Plant pathogenic fungi deploy secreted proteins into apoplastic space or intracellular lumen to promote successful infections during plant-pathogen interactions. In the present study, fourteen CFEM domain-containing proteins were systemically identified in and eight of them were functionally characterized. All eight proteins were confirmed to be secreted into extracellular space by a yeast signal peptide trapping system.

View Article and Find Full Text PDF

The genome encodes numerous glycoside hydrolases involved in organic matter degradation and conducive to pathogen infection, whereas their molecular mechanisms are still largely unknown. Here, we identified the glycoside hydrolase family 28 endopolygalacturonase LtEPG1 in and characterized its function in detail. LtEPG1 acts as a virulence factor during infection.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) refer to a class of RNA molecules that are longer than 200 nucleotides and do not encode proteins. Numerous lncRNAs have recently emerged as important regulators of many biological processes in animals and plants, including responses to environmental stress and pathogens. dieback is one of the more severe grapevine trunk diseases worldwide.

View Article and Find Full Text PDF

Botryosphaeria dieback on the grapevine is caused by Botryosphaeriaceae fungi, which threatens the yield and quality of grapes. At present, chemical control strategies are often observed to be ineffective in controlling the disease worldwide. Improving our understanding of the molecular mechanisms that confer resistance to pathogens would facilitate the development of more pathogen-tolerant grape varieties.

View Article and Find Full Text PDF

Flowering time and plant height are important agronomic traits for crop production. In this study, we characterized a semi-dwarf and late flowering (dlf1) mutation of rice that has pleiotropic effects on these traits. The dlf1 mutation was caused by a T-DNA insertion and the cloned Dlf1 gene was found to encode a WRKY transcription factor (OsWRKY11).

View Article and Find Full Text PDF