Taking into account the fluctuation of the growth rate on the left and right sides of the classic QGLF, a quadratic exponential quality gain-loss function (QGLF) is created based on the asymmetric QGLF. The two scenarios of non-normal distribution (triangular distribution) and truncated normal distribution of quality characteristic values are optimized using the quadratic exponential quality gain-loss process mean. Through the case study approaches, the empirical validity and applicability of the quadratic exponential QGLF model are thoroughly assessed, confirming its effectiveness in improving quality management practices.
View Article and Find Full Text PDFEnhancing the thermoelectric transport properties of conductive polymer materials has been a long-term challenge, in spite of the success seen with molecular doping strategies. However, the strong coupling between the thermopower and the electrical conductivity limits thermoelectric performance. Here, we use polaron interfacial occupied entropy engineering to break through this intercoupling for a PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)) thin film by using photochromic diarylethene (DAE) dopants coupled with UV-light modulation.
View Article and Find Full Text PDFIonic thermoelectric (i-TE) liquid cells offer an environmentally friendly, cost effective, and easy-operation route to low-grade heat recovery. However, the lowest temperature is limited by the freezing temperature of the aqueous electrolyte. Applying a eutectic solvent strategy, we fabricate a high-performance cryo-temperature i-TE liquid cell.
View Article and Find Full Text PDFThe traditional quality gain-loss function(QGLF) considers the case that the primary term loss cannot be ignored, does not consider the cubic term loss, but in practice the cubic term loss should not be ignored. In this paper, based on the existing QGLF model, the Taylor expansion is reserved to the third order, the determination of the quality loss coefficient is discussed and analyzed under the condition that the compensation quantity is constant, and the asymmetric cubic QGLF model is established, and uses an example of concrete mixture out of the machine slump during the dam concrete construction to analyze and discuss the relationship between the proposed model and the traditional quadratic QGLF, which verifies the rationality of the proposed model.
View Article and Find Full Text PDFFerroelectric polymers have great potential applications in mechanical/thermal sensing, but their sensitivity and detection limit are still not outstanding. We propose interface engineering to improve the charge collection in a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-TrFE)) thin film via cross-linking with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) layer. The as-fabricated P(VDF-TrFE)/PEDOT:PSS composite film exhibits an ultrasensitive and linear mechanical/thermal response, showing sensitivities of 2.
View Article and Find Full Text PDFDiffusion is a key kinetic factor determining chemical mixing and phase formation in liquids. In multicomponent systems, the presence of different elements makes it experimentally challenging to measure diffusivities and understand their mechanisms. Using a molecular dynamics simulation, we obtain the diffusion constants and the atomic process of a model Cantor alloy liquid made of five equimolar components.
View Article and Find Full Text PDFMed Image Anal
November 2022
Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) thermoelectric thin films have attracted significant interest due to their solution-processable manufacturing. However, molecular-level tuning or doping is still a challenge to synergistically boost their thermoelectric performance and mechanically stretchable capabilities. In this work, we report a counterion exchange between ionic liquid bis(-fluorosulfonyl) amide lithium (Li:FSI, = 1, 3, 5) with different sizes of anions and a PEDOT:PSS-induced bipolaron network, which significantly boosted the thermoelectric power factor from 0.
View Article and Find Full Text PDFIt is a challenge to spontaneously harvest multiple clean sources from the environment for upgraded energy-converting systems. The ubiquitous moisture and sunlight in nature are attractive for sustainable power generation especially. A high-performance light-coordinated "moist-electric generator" (LMEG) based on the rational combination of a polyelectrolyte and a phytochrome is herein developed.
View Article and Find Full Text PDFOrganic molecules with thermally activated delayed fluorescence (TADF) and aggregation induced emission (AIE) properties have attracted increasing research interest due to their great potential applications in organic light emitting diodes (OLEDs), especially for those with multicolor mechanochromic luminescence (MCL) features. Theoretical research on the luminescence characteristics of organic TADF emitters based on the aggregation states is highly desired to quantify the relationship between the TADF properties and aggregation states. In this work, we study the 4,4'-(6-(9,9-dimethylacridine-10(9)-yl)quinoline-2,3-dibenzonitrile (DMAC-CNQ) emitter with TADF and AIE properties, and calculate the photophysical properties in gas, solid and amorphous states by using the quantum mechanics and molecular mechanics (QM/MM) method.
View Article and Find Full Text PDFAlthough magnetorheological finishing (MRF) is being widely utilized to achieve ultra-smooth optical surfaces, the mechanisms for obtaining such extremely low roughness after the MRF process are not fully understood, especially the impact of finishing stresses. Herein we carefully investigated the relationship between the stresses and surface roughness. Normal stress shows stronger impacts on the surface roughness of fused silica (FS) when compared with the shear stress.
View Article and Find Full Text PDFThe inherently small temperature difference in air environment restricts the applications of thermoelectric generation in the field of Internet of Things and wearable electronics. Here, a leaf-inspired flexible thermoelectric generator (leaf-TEG) that makes maximum use of temperature difference by vertically aligning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and constantan thin films is demonstrated. Analytical formulae of the performance scales, i.
View Article and Find Full Text PDFArtificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B).
View Article and Find Full Text PDFThe role of dynamic and static disorder has been widely discussed for carrier transport in organic semiconductors. In this work, we apply a multiscale approach by combining molecular dynamics simulations, quantum mechanics calculations and kinetic Monte-Carlo simulations to study the influence of dynamic and static disorder on the hole mobility of four didodecyl[1]benzothieno[3,2-b]benzothiophene (BTBT-C12) isomers. It is found that the dynamic disorder of transfer integral tends to decrease the mobility for quasi-1D (quasi one-dimensional) BTBT1 and BTBT4 isomers and increase the mobility for 2D (two-dimensional) BTBT2 and BTBT3 isomers, while the dynamic disorder of site energy tends to decrease mobility for all the four isomers; however, the reduction in 2D molecules is much less than that in quasi-1D molecules.
View Article and Find Full Text PDFIn this paper, ReaxFF force field combined with molecular dynamics method was used to study the ignition, deflagration, and detonation of pentaerythritol tetranitrate (PETN) induced by hot spots. The hot spot is 5.6% of the total volume.
View Article and Find Full Text PDFThe physical and chemical properties of typical nitrate energetic materials under hydrostatic compression and uniaxial compression were studied using the ReaxFF/lg force field combined with the molecular dynamics simulation method. Under hydrostatic compression, the - curve and the bulk modulus ( ) obtained using the VFRS equation of state show that the compressibility of the three crystals is nitroglycerine (NG) > erythritol tetranitrate (ETN) > 2,3-bis-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (NEST-1). The - and -axis of ETN are easy to compress under the action of hydrostatic pressure, but the -axis is not easy to compress.
View Article and Find Full Text PDFHarvesting heat from the environment into electricity has the potential to power Internet-of-things (IoT) sensors, freeing them from cables or batteries and thus making them especially useful for wearable devices. We demonstrate a giant positive thermopower of 17.0 millivolts per degree Kelvin in a flexible, quasi-solid-state, ionic thermoelectric material using synergistic thermodiffusion and thermogalvanic effects.
View Article and Find Full Text PDFArticular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated.
View Article and Find Full Text PDFThe initial reaction mechanism of energetic materials under impact loading and the role of crystal properties in impact initiation and sensitivity are still unclear. In this paper, we report reactive molecular dynamics simulations of shock initiation of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) crystals containing a cube void. Shock-induced void collapse, hot spots formation and growth, as well as spalling are revealed to be dependent on the shock velocity.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2019
Deformation of metallic glasses is closely related to their microstructures which depend on the composition, processing method, and the size of the materials. This subtle structure-property relation is fairly complex and remains to be explored. Here, we scrutinize the microstructural evolution in relation to the mechanical properties in metallic glass nanowires with the same composition and size but subtle microstructural differences by controlling the preparing process using molecular dynamics simulations.
View Article and Find Full Text PDFCharacterized by their slow adhering property, skeletal muscle myogenic progenitor cells (MPCs) have been widely utilized in skeletal muscle tissue engineering for muscle regeneration, but with limited efficacy. Skeletal muscle regeneration is regulated by various cell types, including a large number of rapidly adhering cells (RACs) where their functions and mechanisms are still unclear. In this study, we explored the function of RACs by co-culturing them with MPCs in a biomimetic skeletal muscle organoid system.
View Article and Find Full Text PDFNanoparticles are widely developed and utilized in the pharmaceutical and medicine industry, as they can be easily distributed and infiltrated throughout the whole body once administered; however, the body wide effect of nanoparticles infiltration is still unclear. In this study, we developed a new strategy of Nano Genome Altas (NGA) of multi-tissues to study the acute Body-wide-Organ-Transcriptomic response to nanomaterials. Hydroxyapatite(HA)-Nanoparticles (HANPs) was applied in this study as an example both in vitro and in vivo.
View Article and Find Full Text PDFHexagonal Si (2H polytype) has attracted great interest because of its unique physical properties and wide range of potential applications. For example, it might be used in heterojunctions based on hexagonal and cubic Si. Although hexagonal Si has been reported in Si nanowires, its existence is doubted because structural defects of diamond cubic Si can produce structural signals similar to those attributed to hexagonal Si.
View Article and Find Full Text PDFLeaf shape is an important trait that influences the utilization rate of light, and affects quality and yield of pea (). In the present study, a joint method of high-density genetic mapping using specific locus amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) was applied to rapidly detect loci with leaf shape traits. A total of 7,146 polymorphic SLAFs containing 12,213 SNP markers were employed to construct a high-density genetic map for pea.
View Article and Find Full Text PDFBoth strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently.
View Article and Find Full Text PDF