Publications by authors named "Qijie Dai"

Article Synopsis
  • This study investigated the effects of desalinated seawater, which contains low minerals and high boron levels, on bone health in mice, since previous research shows mixed results.
  • Mice were divided into groups and given water with different boron concentrations while living in a warm, humid environment and exercising, allowing researchers to evaluate changes over 13 weeks.
  • Results indicated that while low to moderate boron levels initially improved bone health, high levels were detrimental, and co-exposure to purified water reduced boron's positive effects, highlighting the need to consider water's mineral content in health studies related to boron.
View Article and Find Full Text PDF
Article Synopsis
  • Osteomyelitis (OM) is an inflammatory bone condition that leads to bone necrosis and disrupts normal bone remodelling processes, but the specific mechanisms behind this disruption are still unclear.
  • Researchers utilized single-cell RNA sequencing to analyze the differences in osteoclast lineages in human cortical bone across healthy, infected, and reconstructed states, applying various advanced techniques like t-SNE and gene expression assays.
  • Experimental models in mice were created to study the relationships between a newly identified lineage of osteoclasts and mesenchymal stem cells (MSCs), revealing effects on bone healing and differentiation potential during different remodelling phases.
View Article and Find Full Text PDF

Background: Association between glucose and inflammatory bowel disease (IBD) was found in previous observational studies and in cohort studies. However, it is not clear whether these associations reflect causality. Thus, this study investigated whether there is such a causal relation between elevated glucose and IBD, Crohn's disease (CD) and ulcerative colitis (UC).

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis.

View Article and Find Full Text PDF

Background And Objectives: Observational study has found inflammatory bowel disease to be associated with multiple extraintestinal manifestations. To this end, we characterized the causal association between inflammatory bowel disease and extraintestinal manifestations through a Mendelian randomization study and further explored the role of intestinal flora in inflammatory bowel disease and the extraintestinal manifestations associated with it.

Materials And Methods: We genetically predicted the causal relationship between inflammatory bowel disease and twenty IBD-related extraintestinal manifestations (including sarcoidosis, iridocyclitis, interstitial lung disease, atopic dermatitis, ankylosing spondylitis, psoriatic arthropathies, primary sclerosing cholangitis, primary biliary cholangitis).

View Article and Find Full Text PDF

Aims: The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods: In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.

Results: Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice.

View Article and Find Full Text PDF

Background: The periosteum stem cells (PSCs) plays a critical role in bone regeneration and defect reconstruction. Insertion of polymethyl methacrylate (PMMA) bone cement can form an induced membrane(IM) and showed promising strategy for bone defect reconstruction, the underlying mechanism remains unclear. Our study sought to determine whether IM-derived cells(IMDCs) versus PSCs have similar characteristics in bone regeneration.

View Article and Find Full Text PDF

The senescence of bone marrow mesenchymal stem cells (BMSCs) is the basis of senile osteoporosis (SOP). Targeting BMSCs senescence is of paramount importance for developing anti-osteoporotic strategy. In this study, we found that protein tyrosine phosphatase 1B (PTP1B), an enzyme responsible for tyrosine dephosphorylation, was significantly upregulated in BMSCs and femurs with advancing chronological age.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease causing severe symptoms that are difficult to treat. Nano-drug delivery system is recognized as a promising strategy for management of RA. However, how to thoroughly release payloads from nanoformulations and synergistic therapy of RA needs to be further investigated.

View Article and Find Full Text PDF

Osteoporosis (OP) is a metabolic bone disease characterized by decreased bone mass and increased bone fragility. The imbalance of bone homeostasis modulated by osteoclasts and osteoblasts is the most crucial pathological change in osteoporosis. As a novel treatment strategy, nanomedicine has been applied in drug delivery and targeted therapy due to its high efficiency, precision, and fewer side effects.

View Article and Find Full Text PDF

The positive role of macrophages in the osteogenesis of mesenchymal stem cells (MSCs) has been a recent research focus. On the other hand, MSCs could carefully regulate the paracrine molecules derived from macrophages. Human umbilical cord mesenchymal stem cells (hucMSCs) can reduce the secretion of inflammatory factors from macrophages to improve injury healing.

View Article and Find Full Text PDF

The periosteum is critical for bone healing. Studies have shown that the periosteum contains periosteal stem cells (PSCs) with multidirectional differentiation potential and self-renewal ability. PSCs are activated in early fracture healing and are committed to the chondrocyte lineage, which is the basis of callus formation.

View Article and Find Full Text PDF

Antiresorptive drugs are widely used for treatment of osteoporosis and cancer bone metastasis, which function mainly through an overall inhibition of osteoclast. However, not all osteoclasts are "bone eaters"; preosteoclasts (pOCs) play anabolic roles in bone formation and angiogenesis through coupling with osteoblasts and secreting platelet derived growth factor-BB (PDGF-BB). In this study, a bone-targeted pH-responsive nanomaterial was designed for selectively eliminating mature osteoclasts (mOCs) without affecting pOCs.

View Article and Find Full Text PDF

Selective cell retention (SCR) has been widely used as a bone tissue engineering technique for the real-time fabrication of bone grafts. The greater the number of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) retained in the scaffold, the better the osteoinductive and angiogenic properties of the scaffold's microenvironment. Improved bioscaffold properties in turn lead to improved bone graft survival, bone regeneration, and angiogenesis.

View Article and Find Full Text PDF

A close relationship has been reported to exist between cadherin-mediated cell-cell adhesion and integrin-mediated cell mobility, and protein tyrosine phosphatase 1B (PTP1B) may be involved in maintaining this homeostasis. The stable residence of mesenchymal stem cells (MSCs) and endothelial cells (ECs) in their niches is closely related to the regulation of PTP1B. However, the exact role of the departure of MSCs and ECs from their niches during bone regeneration is largely unknown.

View Article and Find Full Text PDF

Objective: Based on the cell-extracellular matrix adhesion theory in selective cell retention (SCR) technology, demineralized bone matrix (DBM) modified by simplified polypeptide surface was designed to promote both bone regeneration and angiogenesis.

Methods: Functional peptide of α4 chains of laminin protein (LNα4), cyclic RGDfK (cRGD), and collagen-binding domain (CBD) peptides were selected. CBD-LNα4-cRGD peptide was synthesized in solid phase and modified on DBM to construct DBM/CBD-LNα4-cRGD scaffold (DBM/LN).

View Article and Find Full Text PDF

Endochondral bone formation is an important route for bone repair. Although emerging evidence has revealed the functions of long non-coding RNAs (lncRNAs) in bone and cartilage development, the effect of lncRNAs in endochondral bone repair is still largely unknown. Here, we identified a lncRNA, named Hypertrophic Chondrocyte Angiogenesis-related lncRNA (HCAR), and proved it to promote the endochondral bone repair by upregulating the expression of matrix metallopeptidase 13 (Mmp13) and vascular endothelial growth factor α (Vegfa) in hypertrophic chondrocytes.

View Article and Find Full Text PDF

Inflammatory osteolysis is a common osteolytic specificity that occurs during infectious orthopaedic surgery and is characterized by an imbalance in bone homeostasis due to excessive osteoclast bone resorption activity. Epothilone B (Epo B) induced α-tubulin polymerization and enhanced microtubule stability, which also played an essential role in anti-inflammatory effect on the regulation of many diseases. However, its effects on skeletal system have rarely been investigated.

View Article and Find Full Text PDF

The present study aimed to determine the characteristics of multifidus, erector spinae and psoas major degeneration in elderly patients with degenerative lumbar scoliosis (DLS) and the correlation between asymmetric changes and patient quality of life. A total of 49 patients with lumbar scoliosis (DLS group) and 38 healthy individuals (control group) were prospectively examined. The functional cross-sectional area, cross-sectional area difference index (CDI) and fat infiltration rate (FIR) of the multifidus, erector spinae and psoas major at the apical vertebral level were measured using MRI.

View Article and Find Full Text PDF

Bone infection contributing to inflammatory osteolysis is common in orthopedic surgery. The dynamic balance between bone formation and bone resorption is destroyed due to excessive osteoclast fusion and differentiation, which results in severe bone matrix loss. Many therapeutic approaches that restrain osteoclast formation and function act as efficient ways to prevent inflammatory bone erosion.

View Article and Find Full Text PDF

The immunologic response toward chronic inflammation or bone regeneration via the accumulation of M1 or M2 macrophages after injury could determine the fate of biomaterial. Human umbilical cord mesenchymal stem cells (hUCMSCs) have a pivotal immunomodulatory property on directing macrophage behaviors. Herein, for the first time, 3D-printed poly(lactide-co-glycolide) (PLGA) scaffolds modified with hUCMSC-derived extracellular matrix (PLGA-ECM) are prepared by a facile tissue engineering technique with physical decellularization and 2.

View Article and Find Full Text PDF

Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers.

View Article and Find Full Text PDF