Publications by authors named "Qijiang Shu"

Global changes and drug abuse are forcing humanity to face various disease problems, and alternative therapies with safe natural substances have important research value. This paper combines various techniques in quantum chemical calculations and molecular simulations to provide molecular-level insight into the dynamics of the self-assembly of N-isopropylacrylamide (NIPAM) for loading curcumin (CUR). The results indicate that increasing the chain length of NIPAM molecules reduces their efficiency in encapsulating and locking CUR, and electrostatic interactions and van der Waals interactions are the main driving forces behind the evolution of system configurations in these processes.

View Article and Find Full Text PDF

The many exotic properties of carbon nanotubes (CNTs) make them a powerful attraction in the field of drug delivery systems (DDS). In this work, based on quantum chemical calculation and molecular simulation techniques, polyacrylic acid (PAA) and N-isopropyl acrylamide (NIP) are selected and acted simultaneously on the CNT to form a stable system (FCNT). As a potential DDS, FCNT captures the dispersed doxorubicin (DOX) molecules around it and maintains a stable configuration.

View Article and Find Full Text PDF

We investigated the growth and evolution of Si-based Ge quantum dots (Ge/Si QDs) under low Ge deposition (1.2-4.4 nm thick) using magnetron sputtering.

View Article and Find Full Text PDF

Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.

View Article and Find Full Text PDF

A series of zero-dimensional Ge/Si quantum dots (QDs) samples are fabricated by inducing the transformation from the two-dimensional Ge thin film, which is grown by the traditional direct current (DC) magnetron sputtering, via regulating the annealing process. The QD density increases sharply after the post rapid thermal annealing (PRTA). The observations of atomic force microscopy (AFM) and Raman spectroscopy suggest that the good morphology of Ge QDs results from an appropriate thermodynamics and kinetics surrounding shaped by the cooperative interaction of the Ge-Si lattice mismatch, the film's surface temperature, and the difference in thermal expansion coefficients between Ge and Si.

View Article and Find Full Text PDF