Publications by authors named "Qihong Hu"

Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.

View Article and Find Full Text PDF

In electronic functional chips, one of the most crucial components is the field-effect transistor (FET). To meet the urgent demands for further miniaturization of electronic devices, solid-state single-molecule transistors by molecular orbital gating have been extensively reported. However, under negative bias and positive bias, achieving a distinct gating effect is extremely challenging because molecular orbital gating is independent of the bias polarity.

View Article and Find Full Text PDF

Papillary thyroid carcinoma (PTC) exhibits a trend of multifocal growth. However, the clonal origin of multiple cancer foci in the thyroid gland remains an issue of ongoing debate. In order to investigate the clonal origin and biological behavior differences of multifocal PTC (MPTC) from a unique perspective, a combination of dual gene and dual protein detection methods was used.

View Article and Find Full Text PDF

In this work, novel secondary assembled micro/nano porous spheres ZnCoO were firstly prepared by combining the hydrothermal method with post-synthesis calcinations. The structure and morphology of the obtained powder were characterized by x-ray powder diffraction and field emission-scanning electron microscopy. As the anode material of lithium-ion half-cells, the as-prepared ZnCoO delivered a very high capacity, extra cycling stability and excellent rate capability.

View Article and Find Full Text PDF