Metatronic circuits extend the concept of subwavelength-scaled lumped circuitry from electronics to optics and photonics, providing a distinctive design paradigm for versatile optical nanocircuits. Here, based on the design of optical nanocircuits using metatronics concept, we introduce a general approach for dispersion synthesis with metasurface to achieve high-selectivity filtering response. We theoretically and numerically demonstrate how to achieve basic circuit lumped elements in metatronics by tailoring the dispersion of metasurface at the frequency of interest.
View Article and Find Full Text PDFWaveguide metatronics, known as an advanced platform of metamaterial-inspired circuits, provides a promising paradigm for millimeter-wave and terahertz integrated circuits in future fifth/sixth generation (5/6G) communication systems. By exploiting the structural dispersion properties of waveguides, a lumped type of waveguide integrated elements and circuits could be developed in deep subwavelength scales with intrinsic low loss and low crosstalk. In this study, we focus on constructing negative capacitors and inductors for waveguide metatronics, effectively expanding the operating frequency range of waveguide integrated circuits.
View Article and Find Full Text PDF