Publications by authors named "Qihang Du"

Background: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions.

View Article and Find Full Text PDF

Corn cob is a major waste mass-produced in corn agriculture. Corn cob hydrolysate containing xylose, arabinose, and glucose is the hydrolysis product of corn cob. Herein, a recombinant Escherichia coli strain BT-10 was constructed to transform corn cob hydrolysate into 1,2,4-butanetriol, a platform substance with diversified applications.

View Article and Find Full Text PDF

L-Valine, a branched-chain amino acid with diversified applications, is biosynthesized with α-acetolactate as the key precursor. In this study, the metabolic flux in Klebsiella oxytoca PDL-K5, a Risk Group 1 organism producing 2,3-butanediol as the major fermentation product, was rearranged to L-valine production by introducing exogenous L-valine biosynthesis pathway and blocking endogenous 2,3-butanediol generation at the metabolic branch point α-acetolactate. After further enhancing L-valine efflux, strengthening pyruvate polymerization and selecting of key enzymes for L-valine synthesis, a plasmid-free K.

View Article and Find Full Text PDF

Context: Propofol can induce neuroapoptosis. It has been reported that dexmedetomidine (DEX) has a protective effect on propofol-induced neuroapoptosis, but the specific mechanism needs to be further explored to provide a theoretical basis for their combined use.

Objective: We aimed to explore the neuroprotective effect of DEX on primary cortical neurons treated by propofol and to elucidate the underlying mechanistic pathways.

View Article and Find Full Text PDF

Postoperative cognitive dysfunction (POCD) is a common postoperative central nervous system (CNS) complication with a higher occurrence among aged individuals than among young individuals. The aim of this study was to explore the mechanisms by which POCD preferentially affects older individuals. We found here that exploratory laparotomy induced cognitive function decline in aged mice but not in young mice and that this decline was accompanied by inflammatory activation of microglia in the hippocampus.

View Article and Find Full Text PDF

Background: Spinal cord injury induces inflammatory responses that include the release of cytokines and the recruitment and activation of macrophages and microglia. Neuroinflammation at the lesion site contributes to secondary tissue injury and permanent locomotor dysfunction. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is anti-inflammatory and neuroprotective in both preclinical and clinical trials.

View Article and Find Full Text PDF

Aim: To investigate the effect of propofol on human pancreatic cells and the molecular mechanism of propofol action.

Methods: We used the human pancreatic cancer cell line MIAPaCa-2 for in vitro studies measuring growth inhibition and degree of apoptotic cell death induced by propofol alone, gemcitabine alone, or propofol followed by gemcitabine. All experiments were conducted in triplicate and carried out on three or more separate occasions.

View Article and Find Full Text PDF

Objective: Prognostic markers for hepatocellular carcinoma (HCC) could help in the clinical management and understanding of its poor prognosis. S100 calcium binding protein A4 (S100A4) is directly involved in tumour metastasis. This study evaluated S100A4 gene expression in human HCC, to identify its role in tumour progression.

View Article and Find Full Text PDF

Secretory clusterin (sClu) is an anti-apoptotic protein that plays a role in protecting cells from Tumour-necrosis factor (TNF)-alpha-induced apoptosis. The aim of the present study was to investigate the molecular mechanisms underlying the effect of sClu on TNF-alpha-induced apoptosis in breast cancer cells. The wild-type p53 expressing MCF-7 cell line was engineered to overexpress sClu (MCF-7/sClu), whereas the MDA-MB-231 cell line with mutant p53 was transfected with a sClu silencing siRNA (MDA-MB-231/sClu siRNA).

View Article and Find Full Text PDF