Organic-inorganic hybrid materials built by inorganic and organic building units have attracted intensive interest in the past decades due to unique chemical and physical properties. However, rare organic-inorganic hybrid materials show excellent permanent magnetic properties. Here, we develop a facile chemical solution method to bottom-up synthesize a new hybrid (FeSe)[Fe(dien)].
View Article and Find Full Text PDFα″-FeN nanomaterials with a shape anisotropy for high coercivity performance are of interest in potential applications such as rare-earth-free permanent magnets, which are difficult to synthesize in situ anisotropic growth. Here, we develop a new and facile one-pot microemulsion method with Fe(CO) as the iron source and tetraethylenepentamine (TEPA) as the N/C source at low synthesis temperatures to fabricate carbon-coated tetragonal α″-FeN nanocones. Magnetocrystalline anisotropy energy is suggested as the driving force for the anisotropic growth of α″-FeN@C nanocones because the easy magnetization direction of tetragonal α″-FeN nanocrystals is along the c axis.
View Article and Find Full Text PDFε-Iron nitrides with the general formula ε-Fe3N1+x (-0.40 < x < 0.48) have been widely studied due to their interesting magnetism.
View Article and Find Full Text PDF