Publications by authors named "Qifei Gu"

The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.

View Article and Find Full Text PDF

Background/objectives: Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.

View Article and Find Full Text PDF

To study the characteristics of nasal airflow in the presence of nasal cycle by computational fluid dynamics. CT scan data of a healthy Chinese individual was used to construct a three-dimensional model of the nasal cavity to be used as simulation domain. A sinusoidal airflow velocity is set at the nasal cavity entrance to reproduce the breathing pattern of a healthy human.

View Article and Find Full Text PDF

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity.

View Article and Find Full Text PDF

Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay.

View Article and Find Full Text PDF

Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors controlling exciton transport include material structure, exciton-phonon coupling and electronic state symmetry. Here, we employ femtosecond transient absorption microscopy to study the influence of these parameters on exciton transport in one-dimensional conjugated polymers.

View Article and Find Full Text PDF

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission, optoelectronics, photon frequency conversion and photocatalysis. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling or tuning of the singlet-triplet energy splitting via molecular design.

View Article and Find Full Text PDF

We present a statistical analysis of femtosecond transient absorption microscopy applied to four different organic semiconductor thin films based on perylene-diimide (PDI). By achieving a temporal resolution of 12 fs with simultaneous sub-10 nm spatial precision, we directly probe the underlying exciton transport characteristics within 3 ps after photoexcitation free of model assumptions. Our study reveals sub-picosecond coherent exciton transport (12-45 cm s) followed by a diffusive phase of exciton transport (3-17 cm s).

View Article and Find Full Text PDF

Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains.

View Article and Find Full Text PDF

The recent introduction of inorganic semiconductor quantum dots (QDs) as triplet sensitizers for molecular semiconductors has led to significant interest in harvesting low energy photons, which can then be used for photon upconversion (PUC), triplet-triplet annihilation (TTA). A key goal is the harvesting of photons from below the bandgap of crystalline silicon 1.12 eV (≈1100 nm) and their upconversion into the visible region.

View Article and Find Full Text PDF

We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500-650 nm) and near-infrared (650-950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbICl perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation.

View Article and Find Full Text PDF