Publications by authors named "Qien Yang"

Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated.

View Article and Find Full Text PDF

Environmental hypoxia adversely impacts the reproduction of humans and animals. Previously, we showed that fetal hypoxia exposure led to granulosa cell (GC) autophagic cell death via the Foxo1/Pi3k/Akt pathway. However, the upstream regulatory mechanisms underlying GC dysfunction remain largely unexplored.

View Article and Find Full Text PDF

Introduction: Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system.

Objectives: To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the genetic relationships and breed compositions of 13 sheep breeds, focusing on 11 Chinese indigenous breeds and 2 foreign ones, using whole genome sequencing data derived from SNPs and InDels.
  • - Different breed identification strategies were evaluated, with the most effective being a combination of DFI_union for marker detection and KSR for breed assignment, achieving over 97.5% accuracy with the most informative markers.
  • - The findings emphasize the importance of accurate breed identification for the conservation and sustainable use of indigenous sheep breeds, providing a model for broader applications in livestock genetic resource management.
View Article and Find Full Text PDF

Alpine grasslands are distributed widely on high-elevated ranges and plateaus from the wet tropics to polar regions, accounting for approximately 3% of the world's land area. The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world, and approximately 60% of the plateau consists of alpine grassland, which is used mainly for grazing animals. Livestock structure was determined in Guinan (GN), Yushu (YS) and Maqu counties (MQ) on the QTP by interviewing 235 local pastoralists.

View Article and Find Full Text PDF
Article Synopsis
  • Leydig cells are crucial for testosterone production and male fertility, and their dysfunction can lead to serious reproductive issues.
  • The transcription factor PBX1 has been identified as a key regulator of Leydig cell differentiation and testosterone synthesis in mouse models.
  • Deleting Pbx1 in Leydig cells results in infertility, structural damage to testicular tissue, and altered hormone levels, particularly causing a drop in testosterone while increasing other hormones.
View Article and Find Full Text PDF
Article Synopsis
  • Spermatogenesis is the continuous process of producing sperm through cell divisions and transformation, but improper development can lead to hybrid sterility in mammals like the cattle-yak, a hybrid of cattle and yak.
  • The study used single-cell RNA sequencing to compare testicular cell composition and the development of sperm cells in yak and cattle-yak, revealing significant differences in gene expression and cellular communication that impair sperm production in the hybrid.
  • Findings highlight disrupted signaling between spermatogenic cells and their environment in cattle-yak, leading to issues in the transition to mature sperm, ultimately providing insights into the genetic causes behind hybrid sterility in bovid species.
View Article and Find Full Text PDF
Article Synopsis
  • Spermatogonial stem cells (SSCs) are essential for the continuous production of sperm and maintaining the germline in mammals, but their molecular identities and development have not been clearly defined.
  • Researchers analyzed single-cell transcriptomes from undifferentiated spermatogonia in mice to uncover specific candidate transcription factors and the developmental pathways affecting SSCs and their progenitors.
  • Their findings revealed a particular subtype called Eomes, which shows a quiescent state, plays a significant role in SSC regeneration, has multiple cellular subsets, and is linked to key metabolic pathways essential for regeneration.
View Article and Find Full Text PDF

Background: Inhibitors of DNA binding (ID) proteins mainly inhibit gene expression and regulate cell fate decisions by interacting with E-proteins. All four ID proteins (ID1-4) are present in the testis, and ID4 has a particularly important role in spermatogonial stem cell fate determination. Several lines of evidence indicate that ID proteins are involved in meiosis; however, functional experiments have not been conducted to validate this observation.

View Article and Find Full Text PDF

Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold.

View Article and Find Full Text PDF

Background: Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood.

View Article and Find Full Text PDF

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes.

View Article and Find Full Text PDF

Bidirectional communication between the developing conceptus and endometrium is essential for pregnancy recognition and establishment in ruminants. We dissect the transcriptomic dynamics of sheep conceptus and corresponding endometrium at pre- and peri-implantation stages using single-cell RNA sequencing. Spherical blastocysts contain five cell types, with 68.

View Article and Find Full Text PDF

Spermatogenesis is a complicated process of germ cell differentiation that occurs within the seminiferous tubule in the testis. Peritubular myoid cells (PTMCs) produce major components of the basement membrane that separates and ensures the structural integrity of seminiferous tubules. These cells secrete niche factors to promote spermatogonial stem cell (SSC) maintenance and mediate androgen signals to direct spermatid development.

View Article and Find Full Text PDF

Cattle-yak, the interspecific hybrid between yak and taurine cattle, exhibits male-specific sterility. Massive loss of spermatogenic cells, especially spermatocytes, results in azoospermia in these animals. Currently, the mechanisms underlying meiosis block and defects in spermatocyte development remain elusive.

View Article and Find Full Text PDF

Cattle-yak, the hybrid offspring of yak and taurine cattle, exhibits male sterility with normal female fertility. Spermatogenesis is arrested in adult cattle-yak, and apoptosis is elevated in spermatogenic cells. Currently, the mechanisms underlying these defects remain elusive.

View Article and Find Full Text PDF

Cattle-yak, the hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), serves as a unique model to dissect the molecular mechanisms underlying reproductive isolation. While female cattle-yaks are fertile, the males are completely sterile due to spermatogenic arrest at the meiosis stage and massive germ cell apoptosis. Interestingly, meiotic defects are partially rescued in the testes of backcrossed offspring.

View Article and Find Full Text PDF

Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein.

View Article and Find Full Text PDF

Sertoli cells play indispensable roles in spermatogenesis by providing the advanced germ cells with structural, nutritional, and regulatory support. Lactate is regarded as an essential Sertoli-cell-derived energy metabolite that nurses various types of spermatogenic cells; however, this assumption has not been tested using genetic approaches. Here, we have reported that the depletion of lactate production in Sertoli cells by conditionally deleting lactate dehydrogenase A () greatly affected spermatogenesis.

View Article and Find Full Text PDF

Wild yak (Bos mutus) and domestic yak (Bos grunniens) are adapted to high altitude environment and have ecological, economic, and cultural significances on the Qinghai-Tibetan Plateau (QTP). Currently, the genetic and cellular bases underlying adaptations of yak to extreme conditions remains elusive. In the present study, we assembled two chromosome-level genomes, one each for wild yak and domestic yak, and screened structural variants (SVs) through the long-read data of yak and taurine cattle.

View Article and Find Full Text PDF

For young ruminants, starter feeding can effectively facilitate the growth and development of rumen in ruminants, but the development of rumen is an important physiological challenge as it remains unclear for the mechanism of starter feeding stimulating. In this study, we performed an analysis of ruminal microbiota and their metabolites in yak calves to explore how the ruminal microbiota and their metabolites stimulate the ruminal function. This study associated 16S rRNA sequencing with liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to evaluate the effects of starter feeding on ruminal microbiota diversity and metabolites in yak calves.

View Article and Find Full Text PDF

Male fertility relies on continual and robust spermatogenesis. Environmental hypoxia adversely affects reproductive health in humans and animal studies provide compelling evidences that hypoxia impairs spermatogenesis in directly exposed individuals. However, a detail examination of hypoxia induced changes in testicular gene expression is still lacking and spermatogenesis in offspring of hypoxia exposed animals of awaits investigation.

View Article and Find Full Text PDF

Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development.

View Article and Find Full Text PDF

Sertoli cells are the major component of the spermatogonial stem cell (SSC) niche; however, regulatory mechanisms in Sertoli cells that dictate SSC fate decisions remain largely unknown. Here we revealed features of the N-methyladenosine (mA) mRNA modification in Sertoli cells and demonstrated the functions of WTAP, the key subunit of the mA methyltransferase complex in spermatogenesis. mA-sequencing analysis identified 21,909 mA sites from 15,365 putative mA-enriched transcripts within 6,122 genes, including many Sertoli cell-specific genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrh397097uesddbe1m74g69v5bqd09jbu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once