To meet the growing demands for sustainable and eco-friendly wearable electronics, biopolymer-based hydrogels have attracted much attention. As one of the most abundant sources of biopolymers, starch has the advantages of low-cost, renewability, biocompatibility and biodegradability. However, mechanical fragility, low conductivity and low sensitivity limited the application of starch-based hydrogels.
View Article and Find Full Text PDFConductive hydrogels have been widely used in wearable electronics due to their flexible, conductive and adjustable properties. With ever-growing demand for sustainable and biocompatible sensing materials, biopolymer-based hydrogels have drawn significant attention. Among them, starch-based hydrogels have a great potential for wearable electronics.
View Article and Find Full Text PDFConventional methods for the detection of the sulfur mustard poisoning metabolic marker, thiodiglycol (TDG), require expensive instruments and reagents as well as professional operators. To address these problems, a novel test strip based on a molecularly imprinted sensitive membrane (MIM) was developed in this work for point-of-care (POC) detection of TDG. The TDG test strip was prepared conveniently by coating molecular imprinted polymers (MIPs) on a nitrocellulose membrane.
View Article and Find Full Text PDFIn this study, bentonite-FeO-MnO composite was synthesized by combining bentonite with FeO and MnO through co-precipitation. Vibrating-sample magnetometry, scanning electron microscopy with energy-dispersive X-ray spectrometry, transmission electron microscopy, Brunauer-Emmett-Teller measurements, and X-ray powder diffraction techniques were used to characterize the composite. The composite consists of FeO nanoparticles orderly assembled on the surface of bentonite and an outer layer of MnO sheets.
View Article and Find Full Text PDFEnvironmental hazardous material polychlorinated biphenyl (PCB) exposure is associated with vascular endothelial dysfunction, which may increase the risk of cardiovascular diseases and cancer metastasis. Our previous studies illustrated the cytotoxic, antiproliferative, and genotoxic effects of a synthetic, quinone-type, highly reactive metabolite of PCB, 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (PCB29-pQ). Here, we used it as the model compound to investigate its effects on vascular endothelial integrity and permeability.
View Article and Find Full Text PDF