Publications by authors named "Qibing Li"

The global dissemination of H5 avian influenza viruses represents a significant threat to both human and animal health. In this study, we conducted a genome-wide siRNA library screening against the highly pathogenic H5N1 influenza virus, leading us to the identification of 457 cellular cofactors (441 proviral factors and 16 antiviral factors) involved in the virus replication cycle. Gene Ontology term enrichment analysis revealed that the candidate gene data sets were enriched in gene categories associated with mRNA splicing via spliceosome in the biological process, integral component of membrane in the cellular component, and protein binding in the molecular function.

View Article and Find Full Text PDF

Influenza A virus (IAV) continues to pose serious threats to the global animal industry and public health security. Identification of critical host factors engaged in the life cycle of IAV and elucidation of the underlying mechanisms of their action are particularly important for the discovery of potential new targets for the development of anti-influenza drugs. Herein, we identified Hydroxyacyl-CoA Dehydratase 3 (HACD3) as a new host factor that supports the replication of IAV.

View Article and Find Full Text PDF

Influenza A viruses (IAVs) continue to cause tremendous economic losses to the global animal industry and respiratory diseases and deaths among humans. The nuclear import of the vRNP complex, composed of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP), and viral RNA, is essential for the efficient replication of IAV. Host factors involved in this process can be targeted for the development of countermeasures against IAV infection.

View Article and Find Full Text PDF

Whole genome sequencing (WGS) can provide insight into drug-resistance, transmission chains and the identification of outbreaks, but data analysis remains an obstacle to its routine clinical use. Although several drug-resistance prediction tools have appeared, until now no website integrates drug-resistance prediction with strain genetic relationships and species identification of nontuberculous mycobacteria (NTM). We have established a free, function-rich, user-friendly online platform for MTB WGS data analysis (SAM-TB, http://samtb.

View Article and Find Full Text PDF

Posttranslational modifications, such as SUMOylation, play specific roles in the life cycle of invading pathogens. However, the effect of SUMOylation on the adaptation, pathogenesis, and transmission of influenza A virus (IAV) remains largely unknown. Here, we found that a conserved lysine residue at position 612 (K612) of the polymerase basic protein 1 (PB1) of IAV is a bona fide SUMOylation site.

View Article and Find Full Text PDF

Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.

View Article and Find Full Text PDF

The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new countermeasures to combat the threat of influenza. Here, replication-competent IAVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic potential. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two passages in embryonated chicken eggs.

View Article and Find Full Text PDF

Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session67m5geodv0d1671g1eemf8d4nc1etlgk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once