Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55.
View Article and Find Full Text PDFObjective: To identify factors influencing recurrence after percutaneous transhepatic choledochoscopic lithotripsy (PTCSL) and to develop a predictive model.
Methods: We retrospectively analyzed clinical data from 354 patients with intrahepatic and extrahepatic bile duct stones treated with PTCSL at Qinzhou First People's Hospital between February 2018 and January 2020. Patients were followed for three years and categorized into non-recurrence and recurrence groups based on postoperative outcome.
JAK-STAT cytokines are critical in regulating immunity. Persistent activation of JAK-STAT signaling pathways by cytokines drives chronic inflammatory diseases such as asthma. Herein, we report on the discovery of a highly JAK1-selective, ATP-competitive series of inhibitors having a 1000-fold selectivity over other JAK family members and the approach used to identify compounds suitable for inhaled administration.
View Article and Find Full Text PDFBackground: Adjuvant therapy may improve survival of patients with hepatocellular carcinoma (HCC) after curative resection. This study compared safety and efficacy outcomes between patients at high risk of recurrence who received different types of adjuvant therapy or no such therapy after hepatic resection for HCC.
Methods: Recurrence-free survival (RFS), overall survival, and adverse events were compared among patients who received adjuvant immune checkpoint inhibitors (ICIs) alone, ICIs with tyrosine kinase inhibitors (TKIs), or no adjuvant therapy between 13 March 2019 and 19 March 2022.
Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2020
Hybridisation of amino-pyrimidine based SYK inhibitors (e.g. 1a) with previously reported diamine-based SYK inhibitors (e.
View Article and Find Full Text PDFSpleen Tyrosine Kinase (SYK) is a well-studied enzyme with therapeutic applications in oncology and autoimmune diseases. We identified an azabenzimidazole (ABI) series of SYK inhibitors by mining activity data of 86,000 compounds from legacy biochemical assays with SYK and other homologous kinases as target enzymes. A structure-based design and hybridization approach was then used to improve the potency and kinase selectivity of the hits.
View Article and Find Full Text PDFSpleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition.
View Article and Find Full Text PDFJAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases.
View Article and Find Full Text PDFAberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds.
View Article and Find Full Text PDFObjective: To determine whether serum prealbumin levels are associated with long-term survival after hepatectomy in patients with primary hepatocellular carcinoma(HCC).
Methods: A consecutive sample of 526 patients with HCC who underwent potentially curative hepatectomy from August 2007 to August 2010 was retrospectively analyzed. Patients were classified as having normal or reduced serum prealbumin based on cut-off values of 200 or 182 mg/L.
Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1-3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology.
View Article and Find Full Text PDFCheckpoint kinase 1 (CHK1) inhibitors are potential cancer therapeutics that can be utilized for enhancing the efficacy of DNA damaging agents. Multiple small molecule CHK1 inhibitors from different chemical scaffolds have been developed and evaluated in clinical trials in combination with chemotherapeutics and radiation treatment. Scaffold morphing of thiophene carboxamide ureas (TCUs), such as AZD7762 (1) and a related series of triazoloquinolines (TZQs), led to the identification of fused-ring bicyclic CHK1 inhibitors, 7-carboxamide thienopyridines (7-CTPs), and 7-carboxamide indoles.
View Article and Find Full Text PDFJanus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts.
View Article and Find Full Text PDFJanus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts.
View Article and Find Full Text PDFTargeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies.
View Article and Find Full Text PDFWe have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors.
View Article and Find Full Text PDFWe report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P1 receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound 2 potently inhibits S1P-induced receptor internalization in a cell-based assay (EC50 = 0.05 μM), but has poor physical properties and metabolic stability.
View Article and Find Full Text PDFWe have discovered a novel class of heterocyclic sulfonamides that act as antagonists of the S1P1 receptor. While members of this series identified from a high-throughput screen showed promising levels of potency in a cell-based assay measuring the inhibition of receptor internalization, most compounds were excessively lipophilic and contained an oxidation-prone thioether moiety. As a result, such compounds suffered from poor physical properties and metabolic stability, limiting their utility as in vivo probes.
View Article and Find Full Text PDFStructure based design, synthesis, and biological evaluation of a novel series of 1-methyl-1H-imidazole, as potent Jak2 inhibitors to modulate the Jak/STAT pathway, are described. Using the C-ring fragment from our first clinical candidate AZD1480 (24), optimization of the series led to the discovery of compound 19a, a potent, orally bioavailable Jak2 inhibitor. Compound 19a displayed a high level of cellular activity in hematopoietic cell lines harboring the V617F mutation and in murine BaF3 TEL-Jak2 cells.
View Article and Find Full Text PDFCell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics.
View Article and Find Full Text PDFThe design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1.
View Article and Find Full Text PDFComplete details of an asymmetric synthesis of leucascandrolide A (1) are described. The synthesis highlights the use of two diastereoselective [4 + 2]-annulations for the assembly of the functionalized bispyranyl macrolide 3. An efficient assembly and union of the oxazole-containing side chain 4 with macrolide 3 was carried out using a Mitsunobu reaction.
View Article and Find Full Text PDF[reaction: see text] Preparation and use of anthracene-tagged organosilanes in an iterative, resin-capture-release protocol for the stereocontrolled synthesis of polypropionate arrays are described.
View Article and Find Full Text PDFThe synthesis of complex macrodiolides involving microwave-accelerated transesterification of chiral, nonracemic, hydroxy esters is described. Methodology development studies indicate that both microwave power and reaction temperature play an important role in the efficiency of cyclodimerizations. Hydroxy ester monomer pairs were evaluated using an analytical rehearsal leading to the preparation of a 127-member library of highly diverse and stereochemically well-defined macrodiolides.
View Article and Find Full Text PDF