Publications by authors named "Qiaozi Wang"

Endothelial cells are a heterogeneous population with various organ-specific and conserved functions that are critical to organ development, function, and regeneration. Here we report a Sox17-Erg direct reprogramming approach that uses cardiac fibroblasts to create differentiated endothelial cells that demonstrate endothelial-like molecular and physiological functions in vitro and in vivo. Injection of these induced endothelial cells into myocardial infarct sites after injury results in improved vascular perfusion of the scar region.

View Article and Find Full Text PDF
Article Synopsis
  • Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) shows potential for heart regeneration, but the process's translational regulation is not well understood.
  • Researchers studied the translational landscape of iCM reprogramming and identified Ybx1 as a significant barrier to iCM induction through loss of function screening.
  • In mouse models with myocardial infarction, removing Ybx1 improved iCM generation and heart function, indicating that Ybx1 influences the translational control of factors essential for cardiac reprogramming.
View Article and Find Full Text PDF

CD47-SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47-SIRPα axis is associated with on-target off-tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano-degrader is developed to inhibit CD47-SIRPα axis in a site-specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated.

View Article and Find Full Text PDF

Cardiovascular disease is one of the major causes of death worldwide. Limited proliferative capacity of adult mammalian cardiomyocytes has prompted researchers to exploit regenerative therapy after myocardial injury, such as myocardial infarction, to attenuate heart dysfunction caused by such injury. Direct cardiac reprogramming is a recently emerged promising approach to repair damaged myocardium by directly converting resident cardiac fibroblasts into cardiomyocyte-like cells.

View Article and Find Full Text PDF

Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two.

View Article and Find Full Text PDF

The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) has been shown to provide effective protection against ischemia-reperfusion injury in multiple vital organs such as the heart, brain, kidney. However, the clinical translational potential of systemic administration of RvD1 in the treatment of ischemia-reperfusion injury is greatly limited due to biological instability and lack of targeting ability. Combining the natural inflammatory response and reactive oxygen species (ROS) overproduction after reperfusion injury, we developed a platelet-bionic, ROS-responsive RvD1 delivery platform.

View Article and Find Full Text PDF

Temporal network link prediction is an important task in the field of network science, and has a wide range of applications in practical scenarios. Revealing the evolutionary mechanism of the network is essential for link prediction, and how to effectively utilize the historical information for temporal links and efficiently extract the high-order patterns of network structure remains a vital challenge. To address these issues, in this paper, we propose a novel temporal link prediction model with adjusted sigmoid function and 2-simplex structure (TLPSS).

View Article and Find Full Text PDF

Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI.

View Article and Find Full Text PDF

Immune regulation therapies have been considered promising in the treatment of myocardial ischemia reperfusion (MI/R) injury. Mesenchymal stem cells derived extracellular vesicles (MSC-EVs) are of great potential for immune modulation by reprogramming macrophages but their therapeutic efficacy is hindered by insufficient targeting ability in vivo. Herein, we introduced the platelet membrane modified EVs (P-EVs) based on membrane fusion method to mimic the binding ability of platelets to monocytes.

View Article and Find Full Text PDF

microRNA-mediated direct cardiac reprogramming, directly converts fibroblasts into induced cardiomyocyte-like cells (iCMs), which holds great promise in cardiac regeneration therapy. However, effective approaches to deliver therapeutic microRNA into cardiac fibroblasts (CFs) to induce in vivo cardiac reprogramming remain to be explored. Herein, a non-viral biomimetic system to directly reprogram CFs for cardiac regeneration after myocardial injury was developed by coating FH peptide-modified neutrophil-mimicking membranes on mesoporous silicon nanoparticles (MSNs) loaded with microRNA1, 133, 208, and 499 (miR Combo).

View Article and Find Full Text PDF

Inflammatory modulations focusing on macrophage phenotype are promising candidates to promote better cardiac healing post myocardial ischemia-reperfusion (MI/R) injury. However, the peak of monocyte/macrophage recruitment is later than the time when enhanced permeability and retention effect disappears, which greatly increases the difficulty of reprogramming macrophages through systemic administration. Meanwhile, the inability of nanomaterials to release their contents to specific intracellular locations through reasonable cellular internalization pathways is another obstacle to achieving macrophage reprogramming.

View Article and Find Full Text PDF

Unlabelled: Therapeutic angiogenesis is one promising strategy for the treatment of ischemic heart disease, which is the leading cause of death globally. In recent years, extracellular vesicles (EVs) have quickly gained much attention as a cell-free approach to stimulate angiogenesis. However, clinical applications of EVs are limited by their insufficient targeting capability.

View Article and Find Full Text PDF

Stem cell-derived extracellular vesicles (EVs) have been demonstrated to be effective in heart repair and regeneration post infarction. However, the poor homing efficiency and low yields of these therapeutics remain the major obstacles before they can be used in the clinic. To improve the delivery efficiency of EVs to ischemia-injured myocardium, we modified mesenchymal stem cell (MSC)-derived EVs with monocyte mimics through the method of membrane fusion.

View Article and Find Full Text PDF

Background: Aortic valve disease is the most common valvular heart disease leading to valve replacement. The efficacy of pharmacological therapy for aortic valve disease is limited by the high mechanical stress at the aortic valves impairing the binding rate. We aimed to identify nanoparticle coating with entire platelet membranes to fully mimic their inherent multiple adhesive mechanisms and target the sclerotic aortic valve of apolipoprotein E-deficient (ApoE) mice based on their multiple sites binding capacity under high shear stress.

View Article and Find Full Text PDF

Adult mammalian cardiomyocytes (CMs) retain a limited proliferative ability, which is insufficient for the repair of CM loss in ischemic cardiac injury. Regulation of the Hippo signaling pathway to promote endogenous CM proliferation has emerged as a promising strategy for heart regeneration. Previous studies have shown that the microRNA cluster miR302-367 negatively regulates the Hippo pathway, promoting CM proliferation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers wanted to make heart cell therapy better by using a special peptide called CREKA, which helps cells find and attach to damaged heart tissue.
  • They tested new stem cells that were modified with CREKA and found these cells stuck to the damaged areas much more effectively in both lab tests and in rats with heart injuries.
  • Using these CREKA-modified stem cells led to improved healing and better heart function, showing that targeting fibrin (a protein involved in healing) could help in treating heart injuries.
View Article and Find Full Text PDF